Applied Analysis of the Navier-Stokes and Related Equations

纳维-斯托克斯及相关方程的应用分析

基本信息

项目摘要

This fundamental research in mathematical physics and applied mathematics focuses on the challenges presented by the incompressible Navier-Stokes and related equations of fluid dynamics. The Navier-Stokes equations constitute the basic mathematical model for fluid flow, and are believed to contain turbulent dynamics among their solutions. Turbulence in fluid mechanics remains one of the outstanding challenges for theoretical physics and applied mathematics with important applications in many fields of science and engineering. The work is carried out via modern applied and numerical analysis by the principal investigator and a mathematics graduate student doing doctoral dissertation work.The project has three specific objectives. The first is to extend a rigorous technique for deriving theoretical bounds on turbulent flow quantities to new applications for heat transport in Marangoni convection, and more generally to turbulence in fluid systems with imposed stress boundary conditions. Second, we aim to extend the background field method for applications to unbounded flow domains to derive theoretical limits on turbulent drag coefficients for flows past a compact body. It remains an open problem, for example, to establish a limit on the drag experienced by a sphere moving at high speed through a viscous fluid which is both mathematically rigorous and physically relevant. The third objective is to investigate small length scales appearing in turbulent flows by means of a set of dynamical equations derived for an analytic extension of solutions of the Navier-Stokes equations. Mathematical results in this area will produce strict lower bounds on the small length scales associated with high wavenumber exponential decay of the Fourier power spectrum in turbulent velocity fields.
这项数学物理和应用数学的基础研究集中于不可压缩的Navier-Stokes方程和相关的流体动力学方程所带来的挑战。Navier-Stokes方程构成了流体流动的基本数学模型,其解被认为包含了湍流动力学。流体力学中的湍流一直是理论物理和应用数学面临的突出挑战之一,在科学和工程的许多领域都有重要的应用。这项工作是由首席研究员和一名正在撰写博士论文的数学研究生通过现代应用和数值分析进行的。该项目有三个具体目标。第一个是将推导湍流流量理论边界的严格技术推广到Marangoni对流中热传输的新应用,更广泛地应用于具有施加应力边界条件的流体系统中的湍流。其次,我们的目标是将背景场方法推广到无边界流动区域,以推导出流经紧凑体的湍流阻力系数的理论极限。例如,确定球体在粘性流体中高速运动时所受阻力的极限仍然是一个悬而未决的问题,这在数学上是严格的,在物理上也是相关的。第三个目标是利用为N-S方程的解的解析推广而导出的一组动力学方程来研究湍流中出现的小长度尺度。这方面的数学结果将在与湍流速度场中傅里叶功率谱的高波数指数衰减相关的小长度尺度上产生严格的下界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Doering其他文献

Charles Doering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Doering', 18)}}的其他基金

Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
  • 批准号:
    1515161
  • 财政年份:
    2015
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    1205219
  • 财政年份:
    2012
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
  • 批准号:
    0927587
  • 财政年份:
    2009
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0855335
  • 财政年份:
    2009
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
  • 批准号:
    0553487
  • 财政年份:
    2006
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0555324
  • 财政年份:
    2006
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Fronts, Fluctuations and Growth
前沿、波动和增长
  • 批准号:
    0244419
  • 财政年份:
    2003
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    0244859
  • 财政年份:
    2003
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Stochastic Nonlinear Dynamics
随机非线性动力学
  • 批准号:
    9512741
  • 财政年份:
    1996
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Benchmark analysis and experiment for Darcy/Navier Stokes coupled flow
达西/纳维斯托克斯耦合流的基准分析与实验
  • 批准号:
    19K22346
  • 财政年份:
    2019
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mathematical analysis for Navier-Stokes equations with approximate parameter
具有近似参数的纳维-斯托克斯方程的数学分析
  • 批准号:
    19K03577
  • 财政年份:
    2019
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the Navier-Stokes equations by maximum norms
通过最大范数分析纳维-斯托克斯方程
  • 批准号:
    17K14217
  • 财政年份:
    2017
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Asymptotic analysis of boundary layers for viscous compressible Navier-Stokes equatations
粘性可压缩纳维-斯托克斯方程边界层的渐近分析
  • 批准号:
    15K13449
  • 财政年份:
    2015
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Analysis of the Navier-Stokes regularity problem
纳维-斯托克斯正则问题分析
  • 批准号:
    EP/M019438/1
  • 财政年份:
    2015
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Research Grant
Mathematical analysis to nonstationary Navier-Stokes equations in a domain with piecewise smooth boundaries
分段光滑边界域中非平稳纳维-斯托克斯方程的数学分析
  • 批准号:
    24540156
  • 财政年份:
    2012
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis to non-stationary Navier-Stokes equations in the domain with a corner.
带角域内非平稳Navier-Stokes方程的数学分析。
  • 批准号:
    22540239
  • 财政年份:
    2010
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Covariant Lyapunov analysis of solutions of the Navier-Stokes equations
纳维-斯托克斯方程解的协变李雅普诺夫分析
  • 批准号:
    22654014
  • 财政年份:
    2010
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on the Navier-Stokes equations on unbounded domains by way of real analysis
无界域纳维-斯托克斯方程的实分析研究
  • 批准号:
    21540202
  • 财政年份:
    2009
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了