SHF: Small: Optimizing Compiler and Runtime for Concurrency-Oriented Execution Model

SHF:小型:优化面向并发的执行模型的编译器和运行时

基本信息

  • 批准号:
    1421505
  • 负责人:
  • 金额:
    $ 37.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Title: SHF:Small:Optimizing Compiler and Runtime for Concurrency-Oriented Execution ModelThe "dark silicon" effect, where an increasing fraction of cores will have to be kept powered off (or, "dark"), at every generation of transistor downsizing, has made it difficult to sustain further efficiency gains via the scaling of semiconductor technology. However, the demands of applications and their data on storage and processing capabilities are rapidly growing, thus increasing the gap between the efficiency of the system stack and the needs of modern applications. This research project aims to redesign the system stack based on a novel paradigm that combines throughput-processing architecture and a concurrency-centric compilation framework. The system stack used in this research project consists of architecture specialized for throughput, which trades single-thread instruction level parallelism (ILP) exploitation units for throughput units. The compiler is specialized for concurrency, which minimizes single thread latency by interleaved execution of a tremendous number of concurrent threads.This research project reveals the implications of concurrent execution on throughput processors and how these implications affect compile-time decisions and the corresponding runtime optimization. The intellectual merits are two-fold: 1) it reveals that the existing mainstream CPU compilation techniques are concurrency-oblivious, which leaves both many challenging problems unanswered and many opportunities for performance improvement to be explored, and 2) it tackles these problems by addressing both the resource allocation and instruction/thread scheduling aspects of compile-time decision making, which is where the fundamental difference between the concurrent execution model and the traditional CPU execution model arises. The broader impacts of this project are that the research results will drive innovation in business, education, and computing applications by reinventing the system stack to enhance efficiency and to help achieve the next supercomputing milestone, namely, exascale-computing.
标题:SHF:小:以并发为导向的执行模型“ Dark Silicon”效果,优化编译器和运行时,必须在每一代晶体管缩减尺寸的情况下,必须将越来越多的核心芯的分数保留(或“ Dark”),这使得难以通过半多管技术的缩放来维持进一步的效率。 但是,应用程序的需求及其对存储和处理功能的数据正在迅速增长,从而增加了系统堆栈效率与现代应用程序需求之间的差距。 该研究项目的目的是基于结合吞吐量处理架构和以并发汇编框架的新型范式来重新设计系统堆栈。 该研究项目中使用的系统堆栈由专门用于吞吐量的体系结构组成,该体系结构可用于单线程指令水平并行性(ILP)开发单元用于吞吐量单位。 该编译器专门用于并发,该编译器通过交错执行大量并发线程来最大程度地减少单线延迟。本研究项目揭示了并发执行对吞吐量处理器的含义,以及这些含义如何影响编译时间决策和相应的运行时优化。 The intellectual merits are two-fold: 1) it reveals that the existing mainstream CPU compilation techniques are concurrency-oblivious, which leaves both many challenging problems unanswered and many opportunities for performance improvement to be explored, and 2) it tackles these problems by addressing both the resource allocation and instruction/thread scheduling aspects of compile-time decision making, which is where the fundamental difference between the concurrent execution model and the traditional CPU执行模型出现。该项目的更广泛的影响是,研究结果将通过重新发明系统堆栈以提高效率并帮助实现下一个超级计算的里程碑来推动业务,教育和计算应用程序的创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zheng Zhang其他文献

The determination of neutrophil membrane fluidity in patients with hepatitis B: a fluorescence polarization study
乙型肝炎患者中性粒细胞膜流动性的测定:荧光偏振研究
  • DOI:
    10.1111/j.1699-0463.1997.tb00574.x
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    XUE G. Fan;Zheng Zhang
  • 通讯作者:
    Zheng Zhang
Cadmium accumulation and growth response to cadmium stress of eighteen plant species
十八种植物的镉积累和生长对镉胁迫的响应
Irisin-pretreated BMMSCs secrete exosomes to alleviate cardiomyocytes pyroptosis and oxidative stress to hypoxia/reoxygenation injury.
鸢尾素预处理的 BMMSC 分泌外泌体,以减轻心肌细胞焦亡和缺氧/复氧损伤的氧化应激。
  • DOI:
    10.2174/1574888x18666221117111829
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jingyu Deng;Taoyuan Zhang;Man Li;Guang;Hanwen Wei;Zheng Zhang;Tao
  • 通讯作者:
    Tao
Cavitation Damage Prediction of Stainless Steels Using an Artificial Neural Network Approach
使用人工神经网络方法预测不锈钢的气蚀损伤
  • DOI:
    10.3390/met9050506
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Guiyan Gao;Zheng Zhang;Cheng Cai;Jianglong Zhang;B. Nie
  • 通讯作者:
    B. Nie
Dyeing Performance and Color Evaluation of Cotton Fabrics Dyed with Caesalpinia sappan L. and Galla chinensis Mill. Extract, and the Evaluation of Binary Sequential Dyeing Method
苏木和五倍子染色棉织物的染色性能和颜色评价。
  • DOI:
    10.1007/s12221-024-00481-z
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Fei Xu;Zheng Zhang;Zhijun Zhao;Xinyu Ji;Jianhong Liu;Xiaoyu Song
  • 通讯作者:
    Xiaoyu Song

Zheng Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zheng Zhang', 18)}}的其他基金

SHF: Small: Tackling Mapping and Scheduling Problems for Quantum Program Compilation
SHF:小型:解决量子程序编译的映射和调度问题
  • 批准号:
    2129872
  • 财政年份:
    2021
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Design
合作研究:SHF:媒介:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
  • 批准号:
    2107321
  • 财政年份:
    2021
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Continuing Grant
CAREER: Uncertainty-Aware and Data-Driven Methods for Electronic and Photonic Design Automation
职业:电子和光子设计自动化的不确定性感知和数据驱动方法
  • 批准号:
    1846476
  • 财政年份:
    2019
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Continuing Grant
SHF:Small: Tensor-Based Algorithm and Hardware Co-Optimization for Neural Network Architecture
SHF:Small:基于张量的神经网络架构算法和硬件协同优化
  • 批准号:
    1817037
  • 财政年份:
    2018
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Standard Grant
XPS: EXPL: Cache Management for Data Parallel Architecture
XPS:EXPL:数据并行架构的缓存管理
  • 批准号:
    1628401
  • 财政年份:
    2016
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Standard Grant

相似国自然基金

局部晚期非小细胞肺癌患者预后导向的放射治疗计划优化策略的研究
  • 批准号:
    82303947
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小微企业所得税优惠政策的实施效果及优化路径研究
  • 批准号:
    72373018
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
双中心引力场中的小推力转移轨迹优化研究
  • 批准号:
    12302058
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高维小失效概率下的涡轮盘疲劳寿命可靠性优化设计方法研究
  • 批准号:
    12302154
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
新型抗具核梭杆菌小分子抑制剂作为抗结直肠癌药物的发现、优化与作用机制研究
  • 批准号:
    22377145
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

SHF:Small: Debug Information Validation for Optimizing Compilers
SHF:Small:优化编译器的调试信息验证
  • 批准号:
    2114627
  • 财政年份:
    2021
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Standard Grant
SHF: Small: Characterizing and Optimizing 3D NAND Flash
SHF:小型:表征和优化 3D NAND 闪存
  • 批准号:
    1908793
  • 财政年份:
    2019
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Standard Grant
SHF:Small:RUI: Optimizing Compiler Instruction Scheduling Using GPU-Accelerated Intelligent Search
SHF:Small:RUI:使用 GPU 加速智能搜索优化编译器指令调度
  • 批准号:
    1911235
  • 财政年份:
    2019
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Standard Grant
SHF:Small: OSCARS: Optimizing Self-Configurable Analog ICs for Reliability and Security
SHF:Small:OSCARS:优化自配置模拟 IC 以实现可靠性和安全性
  • 批准号:
    1815583
  • 财政年份:
    2018
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Standard Grant
SHF: Small: Optimizing Consolidation Efficiency of Emerging Virtualized Cloud Applications on Contemporary Server Architecture
SHF:小型:优化当代服务器架构上新兴虚拟化云应用程序的整合效率
  • 批准号:
    1527535
  • 财政年份:
    2015
  • 资助金额:
    $ 37.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了