Studies of the impact of plasmonic metal nano-particles on co-catalysts/semiconductor photocatalysts in solar water splitting
等离子体金属纳米颗粒对太阳能分解水助催化剂/半导体光催化剂影响的研究
基本信息
- 批准号:1437601
- 负责人:
- 金额:$ 36.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Studies of the impact of plasmonic metal nanoparticles on co-catalyst/semiconductor photocatalysts in solar water splittingIn this project, Professor Suljo Linic of The University of Michigan (Ann Arbor) is developing new materials for photocatalytic splitting of water. The splitting of water driven by solar light is one of the most important chemical transformations for which no efficient materials exist. The lack of success in the pursuit of efficient water splitting photocatalysts clearly indicates that new directions are needed. In their proof-of-concept studies Prof. Linic and coworkers showed that an entirely new class of composite photocatalysts, combining plasmonic metal nanoparticles (characterized by their strong interaction with solar light) with semiconductors, exhibits a great deal of promise. While they shed light on multiple factors that play a role in the performance of these composite photocatalysts, predictive models that can quantify the interplay between these factors and guide the design of optimized materials need to be developed. Without such comprehensive predictive models, it is impossible to discuss the upper performance limits for the composite materials, or to identify the geometries of composite photocatalysts that could achieve these limits. The proposed work will develop these predictive models yielding the critical knowledge base required for the design of optimized composite photocatalysts.It was demonstrated recently that a new class of composite materials, combining semiconductors with plasmonic nanoparticles of coinage metals, exhibit improved performance in photo-catalytic splitting of water using Sun light compared to conventional semiconductor photocatalysts. The plasmonic nanostructures act to selectively trap light in the regions of the semiconductor where the water splitting process is taking place, i.e. the water/semiconductor interface, thereby selectively enhancing the rates of e-/h+ formation in this region and improving the performance of the material. The proof-of-concept work focused on photochemical splitting of water on the composites of nitrogen-doped TiO2 and nanoparticles of Ag. While these initial studies led to a very vibrant field of photochemistry on the composite materials, there are many unanswered critical issues. This award will allow Linic to focus on a number of these issues, including: (i) Establishing that the underlying mechanisms and critical concepts are transferable to other more advanced photocatalyst systems. In particular, more efficient multifunctional photocatalysts that include a co-catalyst and a semiconductor are of interest. (ii) Identifying critical physical properties that govern the performance of plasmonic-metal/co-catalyst/semiconductor photocatalysts. Predictive, physically transparent models that relate optical and geometric properties of photocatalysts to their performance in photocatalytic splitting of water will be the deliverables. These predictive structure/performance relationships are required for the design of composite photocatalysts that can achieve optimal performance. (iii) Validate these models by synthesizing and testing the plasmonic-metal/co-catalyst/semiconductor photocatalysts with optimal physical characteristics. An outreach program developed by Professor Linic to area high schools is allowing local high school students the opportunity to participate in this research and to learn about sustainable energy transformations. Furthermore, significant efforts will be made to expose general public to various fields of sustainable energy generation using World Wide Web. The broader impacts of this work include potential societal benefits from the discovery of new generation of photocatalysts as well as the development of training opportunities for students and teachers.
职务名称:等离子体金属纳米颗粒对太阳能水分解中助催化剂/半导体光催化剂的影响研究在这个项目中,密歇根大学(安阿伯)的Suljo Linic教授正在开发用于光催化分解水的新材料。由太阳光驱动的水的分裂是最重要的化学转化之一,没有有效的材料存在。在追求有效的水分解光催化剂方面缺乏成功,这清楚地表明需要新的方向。在他们的概念验证研究中,Linic教授及其同事表明,一种全新的复合光催化剂,将等离子体金属纳米颗粒(其特征在于与太阳光的强烈相互作用)与半导体相结合,表现出很大的前景。虽然它们揭示了在这些复合光催化剂性能中发挥作用的多种因素,但需要开发可以量化这些因素之间相互作用并指导优化材料设计的预测模型。如果没有这样全面的预测模型,就不可能讨论复合材料的性能上限,也不可能确定可以达到这些限制的复合光催化剂的几何形状。拟议的工作将开发这些预测模型产生的关键知识基础所需的优化复合photocatalysts.It的设计最近表明,一类新的复合材料,结合半导体与等离子体纳米粒子的钴金属,表现出改善的性能,在光催化分解水使用太阳光相比,传统的半导体光催化剂。 等离子体纳米结构用于选择性地将光捕获在发生水裂解过程的半导体区域中,即水/半导体界面,从而选择性地增强该区域中的e-/h+形成速率并改善材料的性能。概念验证工作的重点是光化学分裂的水的氮掺杂的二氧化钛和银纳米粒子的复合材料。虽然这些最初的研究导致了复合材料光化学领域的一个非常活跃的领域,但仍有许多关键问题没有得到解决。该奖项将使Linic能够专注于其中一些问题,包括:(i)确定潜在的机制和关键概念可以转移到其他更先进的光催化剂系统。特别地,包括助催化剂和半导体的更有效的多功能光催化剂是令人感兴趣的。(ii)确定决定等离子体金属/助催化剂/半导体光催化剂性能的关键物理性质。预测性的、物理上透明的模型,将光催化剂的光学和几何特性与其在光催化分解水方面的性能联系起来,将是可交付的成果。这些预测的结构/性能关系是设计可以实现最佳性能的复合光催化剂所必需的。(iii)通过合成和测试具有最佳物理特性的等离子体金属/助催化剂/半导体光催化剂来验证这些模型。Linic教授为地区高中制定的一项推广计划使当地高中生有机会参与这项研究,并了解可持续能源转型。此外,还将作出重大努力,利用万维网使公众了解可持续能源生产的各个领域。这项工作的更广泛影响包括发现新一代光催化剂的潜在社会效益以及为学生和教师提供培训机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suljo Linic其他文献
Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
用于太阳能高效转化为化学能的等离子体金属纳米结构
- DOI:
10.1038/nmat3151 - 发表时间:
2011-11-23 - 期刊:
- 影响因子:38.500
- 作者:
Suljo Linic;Phillip Christopher;David B. Ingram - 通讯作者:
David B. Ingram
Photochemical transformations on plasmonic metal nanoparticles
等离子体金属纳米粒子上的光化学转化
- DOI:
10.1038/nmat4281 - 发表时间:
2015-05-20 - 期刊:
- 影响因子:38.500
- 作者:
Suljo Linic;Umar Aslam;Calvin Boerigter;Matthew Morabito - 通讯作者:
Matthew Morabito
Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures
混合等离子体纳米结构中能量和电荷载流子的流动与提取
- DOI:
10.1038/s41563-020-00858-4 - 发表时间:
2021-01-04 - 期刊:
- 影响因子:38.500
- 作者:
Suljo Linic;Steven Chavez;Rachel Elias - 通讯作者:
Rachel Elias
Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures
等离子体金属纳米结构上太阳能到化学能的催化转化
- DOI:
10.1038/s41929-018-0138-x - 发表时间:
2018-09-12 - 期刊:
- 影响因子:44.600
- 作者:
Umar Aslam;Vishal Govind Rao;Steven Chavez;Suljo Linic - 通讯作者:
Suljo Linic
Suljo Linic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suljo Linic', 18)}}的其他基金
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
- 批准号:
2116646 - 财政年份:2021
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Maximizing efficiency in solar water splitting by engineering interfaces in hybrid photo-catalysts
通过混合光催化剂中的工程界面最大限度地提高太阳能水分解效率
- 批准号:
1803991 - 财政年份:2018
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Controlling the energy flow in multi-component plasmonic structures for selective catalysis
控制多组分等离子体结构中的能量流以实现选择性催化
- 批准号:
1800197 - 财政年份:2018
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
INFEWS N/P/H2O: Photo-thermal ammonia synthesis of plasmonic metal nanoparticles
INFEWS N/P/H2O:等离子体金属纳米粒子的光热氨合成
- 批准号:
1702471 - 财政年份:2017
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
- 批准号:
1362120 - 财政年份:2014
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
- 批准号:
1436056 - 财政年份:2014
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Conference: Kokes Awards for the 20th North American Catalysis Society Meeting, Detroit, Michigan, June 5-10, 2011
会议:第 20 届北美催化学会会议 Kokes 奖,密歇根州底特律,2011 年 6 月 5 日至 10 日
- 批准号:
1115990 - 财政年份:2011
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Designing Efficient Platinum-Free Electrocatalysts for Oxygen Reduction Reaction
设计用于氧还原反应的高效无铂电催化剂
- 批准号:
1132777 - 财政年份:2011
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
- 批准号:
1111770 - 财政年份:2011
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
相似国自然基金
The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于ImPACT方案的家长干预对孤独症谱系障碍儿童干预疗效及神经生物学机制研究
- 批准号:82301732
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
西方饮食通过“肠道菌群-Rspo1”轴促进肥胖与肠道吸收的机制研究
- 批准号:82370845
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
2型糖尿病胰岛β细胞功能调控新靶点IMPACT的功能及作用机制研究
- 批准号:81600598
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于IMPACT模型的社区慢性病干预效果的经济学评价研究
- 批准号:71303173
- 批准年份:2013
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 36.18万 - 项目类别:
Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
- 批准号:
2881629 - 财政年份:2027
- 资助金额:
$ 36.18万 - 项目类别:
Studentship
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 36.18万 - 项目类别:
Studentship
BRIDGEGAP - Bridging the Gaps in Evidence, Regulation and Impact of Anticorruption Policies
BRIDGEGAP - 缩小反腐败政策的证据、监管和影响方面的差距
- 批准号:
10110711 - 财政年份:2024
- 资助金额:
$ 36.18万 - 项目类别:
EU-Funded
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
- 批准号:
10112272 - 财政年份:2024
- 资助金额:
$ 36.18万 - 项目类别:
SME Support
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 36.18万 - 项目类别:
Collaborative R&D
EMPOWHPVR: Exploring the factors that impact HPV self-sampling uptake amongst Black women and people with a cervix in Peel region, Ontario
EMPOWHPVR:探讨影响安大略省皮尔地区黑人女性和宫颈癌患者 HPV 自我采样率的因素
- 批准号:
502585 - 财政年份:2024
- 资助金额:
$ 36.18万 - 项目类别:
Evaluating the Impact and Efficiency of Engineering the Ocean to Remove CO2
评估海洋工程去除二氧化碳的影响和效率
- 批准号:
DE240100115 - 财政年份:2024
- 资助金额:
$ 36.18万 - 项目类别:
Discovery Early Career Researcher Award
The global impact of high summer temperature on heatstroke mortality in the current climate scenario
当前气候情景下夏季高温对中暑死亡率的全球影响
- 批准号:
24K13527 - 财政年份:2024
- 资助金额:
$ 36.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
- 批准号:
ES/Z502431/1 - 财政年份:2024
- 资助金额:
$ 36.18万 - 项目类别:
Fellowship