Studies of the impact of plasmonic metal nano-particles on co-catalysts/semiconductor photocatalysts in solar water splitting

等离子体金属纳米颗粒对太阳能分解水助催化剂/半导体光催化剂影响的研究

基本信息

项目摘要

Title: Studies of the impact of plasmonic metal nanoparticles on co-catalyst/semiconductor photocatalysts in solar water splittingIn this project, Professor Suljo Linic of The University of Michigan (Ann Arbor) is developing new materials for photocatalytic splitting of water. The splitting of water driven by solar light is one of the most important chemical transformations for which no efficient materials exist. The lack of success in the pursuit of efficient water splitting photocatalysts clearly indicates that new directions are needed. In their proof-of-concept studies Prof. Linic and coworkers showed that an entirely new class of composite photocatalysts, combining plasmonic metal nanoparticles (characterized by their strong interaction with solar light) with semiconductors, exhibits a great deal of promise. While they shed light on multiple factors that play a role in the performance of these composite photocatalysts, predictive models that can quantify the interplay between these factors and guide the design of optimized materials need to be developed. Without such comprehensive predictive models, it is impossible to discuss the upper performance limits for the composite materials, or to identify the geometries of composite photocatalysts that could achieve these limits. The proposed work will develop these predictive models yielding the critical knowledge base required for the design of optimized composite photocatalysts.It was demonstrated recently that a new class of composite materials, combining semiconductors with plasmonic nanoparticles of coinage metals, exhibit improved performance in photo-catalytic splitting of water using Sun light compared to conventional semiconductor photocatalysts. The plasmonic nanostructures act to selectively trap light in the regions of the semiconductor where the water splitting process is taking place, i.e. the water/semiconductor interface, thereby selectively enhancing the rates of e-/h+ formation in this region and improving the performance of the material. The proof-of-concept work focused on photochemical splitting of water on the composites of nitrogen-doped TiO2 and nanoparticles of Ag. While these initial studies led to a very vibrant field of photochemistry on the composite materials, there are many unanswered critical issues. This award will allow Linic to focus on a number of these issues, including: (i) Establishing that the underlying mechanisms and critical concepts are transferable to other more advanced photocatalyst systems. In particular, more efficient multifunctional photocatalysts that include a co-catalyst and a semiconductor are of interest. (ii) Identifying critical physical properties that govern the performance of plasmonic-metal/co-catalyst/semiconductor photocatalysts. Predictive, physically transparent models that relate optical and geometric properties of photocatalysts to their performance in photocatalytic splitting of water will be the deliverables. These predictive structure/performance relationships are required for the design of composite photocatalysts that can achieve optimal performance. (iii) Validate these models by synthesizing and testing the plasmonic-metal/co-catalyst/semiconductor photocatalysts with optimal physical characteristics. An outreach program developed by Professor Linic to area high schools is allowing local high school students the opportunity to participate in this research and to learn about sustainable energy transformations. Furthermore, significant efforts will be made to expose general public to various fields of sustainable energy generation using World Wide Web. The broader impacts of this work include potential societal benefits from the discovery of new generation of photocatalysts as well as the development of training opportunities for students and teachers.
标题:血浆金属纳米颗粒对太阳能水裂解的共催化剂/半导体光催化剂的影响,密歇根大学(Ann Arbor)的Suljo Linic教授正在开发用于水的光催化剥离的新材料。太阳光驱动的水分裂是不存在有效材料的最重要的化学转化之一。在追求有效的水分裂光催化剂方面缺乏成功清楚地表明需要新的方向。在他们的概念验证研究中,Linic和同事教授表明,一类全新的复合光催化剂,将等离子体金属纳米颗粒(以与太阳能相互作用的强相互作用)与半导体相结合,表现出很大的希望。尽管他们阐明了多种因素在这些复合光催化剂的性能中发挥作用,但可以量化这些因素之间相互作用并指导优化材料的设计的预测模型需要开发。如果没有如此全面的预测模型,就不可能讨论复合材料的高性能限制,或者确定可以达到这些限制的复合光催化剂的几何形状。拟议的工作将开发这些预测模型,从而产生了设计优化的复合光催化剂所需的关键知识库。最近证明,将半导体与等离子金属的等离子纳米颗粒相结合的新型复合材料,与传统的光核能相比,使用太阳光相比,在水中表现出了在光电散布中的性能。 等离子纳米结构作用于在进行水分裂过程(即水/半导体界面)的半导体区域中有选择地捕获光,从而选择性地增强了该区域中E-/H+地层的速率并改善了材料的性能。概念验证工作的重点是在氮掺杂TiO2和Ag的纳米颗粒的复合材料上进行光化学分裂。尽管这些最初的研究导致复合材料的光化学领域非常活跃,但仍有许多未解决的关键问题。该奖项将允许Linic专注于许多此类问题,包括:(i)确定基本机制和关键概念可以转移到其他更先进的光催化剂系统。特别是,包括共催化剂和半导体包括更有效的多功能光催化剂。 (ii)确定控制等离子 - 金属/共催化剂/半导体光催化剂的临界物理特性。将光催化剂的光学和几何特性与它们在水的光催化分裂中的性能相关联的预测性,透明的模型将是可交付成果。这些可以实现最佳性能的复合光催化剂的设计需要这些预测性结构/性能关系。 (iii)通过合成和测试具有最佳物理特征的等离子 - 金属/共催化剂/半导体光催化剂来验证这些模型。 Linic教授到地区高中开发的宣传计划允许当地高中学生有机会参加这项研究并了解可持续的能源转型。此外,将采取巨大的努力,将公众公开接触到使用万维网的各个可持续能源产生领域。这项工作的更广泛影响包括发现新一代光催化剂以及为学生和教师创造培训机会的潜在社会利益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suljo Linic其他文献

Suljo Linic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suljo Linic', 18)}}的其他基金

CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
  • 批准号:
    2349887
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
  • 批准号:
    2116646
  • 财政年份:
    2021
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
Maximizing efficiency in solar water splitting by engineering interfaces in hybrid photo-catalysts
通过混合光催化剂中的工程界面最大限度地提高太阳能水分解效率
  • 批准号:
    1803991
  • 财政年份:
    2018
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
Controlling the energy flow in multi-component plasmonic structures for selective catalysis
控制多组分等离子体结构中的能量流以实现选择性催化
  • 批准号:
    1800197
  • 财政年份:
    2018
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
INFEWS N/P/H2O: Photo-thermal ammonia synthesis of plasmonic metal nanoparticles
INFEWS N/P/H2O:等离子体金属纳米粒子的光热氨合成
  • 批准号:
    1702471
  • 财政年份:
    2017
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
  • 批准号:
    1362120
  • 财政年份:
    2014
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
  • 批准号:
    1436056
  • 财政年份:
    2014
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
Conference: Kokes Awards for the 20th North American Catalysis Society Meeting, Detroit, Michigan, June 5-10, 2011
会议:第 20 届北美催化学会会议 Kokes 奖,密歇根州底特律,2011 年 6 月 5 日至 10 日
  • 批准号:
    1115990
  • 财政年份:
    2011
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
Designing Efficient Platinum-Free Electrocatalysts for Oxygen Reduction Reaction
设计用于氧还原反应的高效无铂电催化剂
  • 批准号:
    1132777
  • 财政年份:
    2011
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
  • 批准号:
    1111770
  • 财政年份:
    2011
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant

相似国自然基金

密度涨落对等离子体辐射过程影响的粒子模拟研究
  • 批准号:
    12303060
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
等离子体渐近条件影响磁场重联霍尔效应的规律与机理的系统研究
  • 批准号:
    42374206
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
电离层与等离子体层耦合对等离子体层时空分布特征的影响研究
  • 批准号:
    42374181
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
共振磁扰动影响高密度等离子体边界湍流输运和辐射热不稳定性的研究
  • 批准号:
    12375218
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
嬗变元素铼(Re)对聚变装置钨面向等离子体材料服役性能的影响研究
  • 批准号:
    12305226
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Studentship
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Studentship
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Continuing Grant
What is the impact of increasing boreal forest fires on Arctic climate and sea ice?
北方森林火灾的增加对北极气候和海冰有何影响?
  • 批准号:
    2337045
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了