Mean-Field Limits of Quantum Many-Body Dynamics and Free Boundaries in Kinetic Theory
量子多体动力学的平均场极限和运动理论中的自由边界
基本信息
- 批准号:1464869
- 负责人:
- 金额:$ 16.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program concerns the study of the rigorous justification of mean-field limits of quantum many-body dynamics and free boundaries problems in kinetic theory. Many-body systems arise naturally as fundamental models for physical systems. Since these many-body systems could contain 10^23 particles or more, the simulation of such systems is only possible via some approximation, such as the so-called mean-field limits. The mathematical justification of these mean-field limits, from the many-body systems they are supposed to describe, is therefore an issue of fundamental scientific importance. Two projects arise from the study of Bose-Einstein condensation (BEC). BEC is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero. A large fraction of the bosons occupy the same quantum state, at which point quantum effects become apparent on a macroscopic scale. Since the Nobel-Prize-winning first observation of BEC in 1995, the investigation of this new state of matter has become one of the most active areas of contemporary research. Another project involves the determination of the motion of an object that is influenced by a sea of particles around it.The particular scope of this research project is to investigate several problems concerning the fine properties of solutions to the time-dependent many-body Schrödinger equation when the particle number tends to infinity and free boundary problems in kinetic theory. This research project encompasses three broad directions. The first direction concerns the space-time regularity of the solution to the BBGKY hierarchy under Gross-Pitaevskii scaling in three dimensions in the important case in which the scattering length of the microscopic interaction potential emerges. The second direction focuses on the derivation of focusing nonlinear Schrödinger equations from quantum many-body systems with focusing interactions. The third direction turns to the study of kinetic theory with boundaries and focuses on the effects on the asymptotic behaviors near equilibrium in caused by free boundaries. The PI and collaborators will use techniques from harmonic analysis, probability, and spectral theory to analyze these problems.
本研究计划关注量子多体动力学平均场极限的严格论证和动力学理论中的自由边界问题的研究。多体系统作为物理系统的基本模型自然出现。由于这些多体系统可能包含10^23个或更多的粒子,因此只能通过一些近似来模拟这样的系统,例如所谓的平均场极限。因此,这些平均场极限的数学证明,从它们应该描述的多体系统来看,是一个具有基本科学重要性的问题。两个项目源于玻色-爱因斯坦凝聚(BEC)的研究。玻色-爱因斯坦凝聚(BEC)是玻色子的稀气体冷却到非常接近绝对零度的物质状态。大部分玻色子占据相同的量子态,此时量子效应在宏观尺度上变得明显。自1995年诺贝尔奖获得者首次观测到BEC以来,对这种新物质状态的研究已成为当代研究中最活跃的领域之一。另一个研究项目是确定受周围粒子海影响的物体的运动。本研究项目的具体范围是研究与时间相关的多体薛定谔方程在粒子数趋于无穷大时的解的精细性质以及动力学理论中的自由边界问题。这个研究项目包括三个大方向。第一个方向涉及的空间-时间的规则性的解决方案的BBGKY层次下的Gross-Pitaevskii标度在三维中的重要情况下,其中出现的散射长度的微观相互作用潜力。第二个方向集中在从具有聚焦相互作用的量子多体系统导出聚焦非线性薛定谔方程。第三个方向转向研究有边界的动力学理论,重点研究自由边界对平衡点附近渐近行为的影响。PI和合作者将使用谐波分析,概率和频谱理论来分析这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuwen Chen其他文献
Dichloromethane as methylene donor for the one-pot synthesis of bisaryloxy methanes via Williamson etherification and Suzuki coupling
二氯甲烷作为亚甲基供体,通过 Williamson 醚化和 Suzuki 偶联一锅法合成双芳氧基甲烷
- DOI:
10.1016/j.tetlet.2016.10.023 - 发表时间:
2016-11 - 期刊:
- 影响因子:1.8
- 作者:
Xuwen Chen;Changfeng Hu;Jie-Ping Wan;Yunyun Liu - 通讯作者:
Yunyun Liu
Convergence to Equilibrium of a Body Moving in a Kinetic Sea
运动海洋中运动物体的平衡收敛
- DOI:
10.1137/15m1035549 - 发表时间:
2015 - 期刊:
- 影响因子:2
- 作者:
Xuwen Chen;W. Strauss - 通讯作者:
W. Strauss
Classical Proofs Of Kato Type Smoothing Estimates for The Schrödinger Equation with Quadratic Potential in $\mathbb{R}^{n+1}$ with application
$mathbb{R}^{n+1}$ 中具有二次势的薛定谔方程的加藤型平滑估计的经典证明及其应用
- DOI:
10.57262/die/1356019031 - 发表时间:
2010 - 期刊:
- 影响因子:1.4
- 作者:
Xuwen Chen - 通讯作者:
Xuwen Chen
Copper-catalyzed one-pot reactions of acetyl chloride, o-halobenzoic acids and Wittig reagents toward 3-methyl isocoumarin synthesis
铜催化乙酰氯、邻卤苯甲酸和Wittig试剂的一锅反应合成3-甲基异香豆素
- DOI:
10.1039/c7ra06707k - 发表时间:
2017 - 期刊:
- 影响因子:3.9
- 作者:
Xuwen Chen;Yunyun Liu - 通讯作者:
Yunyun Liu
Methods of Harmonic Analysis Applied to Bose-Einstein Condensation
应用于玻色-爱因斯坦凝聚的调和分析方法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xuwen Chen - 通讯作者:
Xuwen Chen
Xuwen Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuwen Chen', 18)}}的其他基金
From Quantum Many-Body Dynamics to Energy-Critical Nonlinear Schrodinger Equations and Back
从量子多体动力学到能量关键的非线性薛定谔方程以及返回
- 批准号:
2005469 - 财政年份:2020
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 16.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 16.23万 - 项目类别:
Research Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2345533 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2206085 - 财政年份:2022
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
Using an Insulator-Metal Transition to Overcome the Fundamental Limits of Non-Volatile Memory Based on Ferroelectric Field Effect Transistors
利用绝缘体-金属转变克服基于铁电场效应晶体管的非易失性存储器的基本限制
- 批准号:
1914730 - 财政年份:2019
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
Evolutionary rescue and the limits to phenotypic plasticity: testing theory in the field
进化救援和表型可塑性的限制:现场测试理论
- 批准号:
NE/P001793/1 - 财政年份:2017
- 资助金额:
$ 16.23万 - 项目类别:
Research Grant
Evolutionary rescue and the limits to phenotypic plasticity: testing theory in the field
进化救援和表型可塑性的限制:现场测试理论
- 批准号:
NE/P002145/1 - 财政年份:2017
- 资助金额:
$ 16.23万 - 项目类别:
Research Grant
WiFiUS: Fault-Tolerant Cognitive IoT Systems Using Sensors of Limited Field-of-View: Fundamental Limits and Practical Strategies
WiFiUS:使用有限视场传感器的容错认知物联网系统:基本限制和实际策略
- 批准号:
1702694 - 财政年份:2017
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
Modelling variety dependant least limiting water range: assessing the limits to root elongation in field soil.
模拟品种相关的最小限制水范围:评估田间土壤中根系伸长的限制。
- 批准号:
1805417 - 财政年份:2016
- 资助金额:
$ 16.23万 - 项目类别:
Studentship
The Ultimate Limits of Nanoplasmonic Near-Field Enhancement
纳米等离子体近场增强的终极极限
- 批准号:
448999-2013 - 财政年份:2013
- 资助金额:
$ 16.23万 - 项目类别:
University Undergraduate Student Research Awards