Mean-Field Limits of Quantum Many-Body Dynamics and Free Boundaries in Kinetic Theory
量子多体动力学的平均场极限和运动理论中的自由边界
基本信息
- 批准号:1464869
- 负责人:
- 金额:$ 16.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program concerns the study of the rigorous justification of mean-field limits of quantum many-body dynamics and free boundaries problems in kinetic theory. Many-body systems arise naturally as fundamental models for physical systems. Since these many-body systems could contain 10^23 particles or more, the simulation of such systems is only possible via some approximation, such as the so-called mean-field limits. The mathematical justification of these mean-field limits, from the many-body systems they are supposed to describe, is therefore an issue of fundamental scientific importance. Two projects arise from the study of Bose-Einstein condensation (BEC). BEC is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero. A large fraction of the bosons occupy the same quantum state, at which point quantum effects become apparent on a macroscopic scale. Since the Nobel-Prize-winning first observation of BEC in 1995, the investigation of this new state of matter has become one of the most active areas of contemporary research. Another project involves the determination of the motion of an object that is influenced by a sea of particles around it.The particular scope of this research project is to investigate several problems concerning the fine properties of solutions to the time-dependent many-body Schrödinger equation when the particle number tends to infinity and free boundary problems in kinetic theory. This research project encompasses three broad directions. The first direction concerns the space-time regularity of the solution to the BBGKY hierarchy under Gross-Pitaevskii scaling in three dimensions in the important case in which the scattering length of the microscopic interaction potential emerges. The second direction focuses on the derivation of focusing nonlinear Schrödinger equations from quantum many-body systems with focusing interactions. The third direction turns to the study of kinetic theory with boundaries and focuses on the effects on the asymptotic behaviors near equilibrium in caused by free boundaries. The PI and collaborators will use techniques from harmonic analysis, probability, and spectral theory to analyze these problems.
该研究计划涉及对动力学理论中量子多体动力学和自由边界问题的平均场限制的严格理由的研究。多体系统自然是物理系统的基本模型。由于这些多体系统可能包含10^23个或更多粒子,因此只能通过一些近似(例如所谓的平均场限制)对这种系统进行仿真。因此,这些平均场限制的数学正当理由来自他们期望描述的多体系统,这是一个基本的科学重要性问题。两个项目来自Bose-Einstein凝结的研究(BEC)。 BEC是一种稀释气体的问题,冷却至非常接近绝对零的温度。大部分玻色子占据相同的量子状态,此时量子效应在宏观尺度上变得显而易见。自从1995年对诺贝尔奖赢得BEC的首次观察以来,对这种新物质状态的调查已成为当代研究中最活跃的领域之一。另一个项目涉及确定受周围颗粒海洋影响的物体运动的确定。该研究项目的特殊范围是研究有关粒子趋于粒子趋于无限性和动力学理论的无限边界问题时,有关解决方案的良好特性的几个问题。该研究项目包括三个广泛的方向。第一个方向涉及在三个维度缩放下缩放的BBGKY层次结构的解决方案的时空规则性,在重要情况下,微观相互作用势的散射长度出现了。第二个方向集中于从量子多体系统中聚焦非线性schrödinger方程的推导,并具有聚焦相互作用。第三个方向转向了具有边界的动力学理论的研究,并着重于自由边界引起的平衡附近的不对称行为的影响。 PI和合作者将使用谐波分析,概率和光谱理论中的技术来分析这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuwen Chen其他文献
On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap
具有二次陷阱的3D三次非线性薛定谔方程的严格推导
- DOI:
10.1007/s00205-013-0645-5 - 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Xuwen Chen - 通讯作者:
Xuwen Chen
On the Uniqueness of Solutions to the Gross-Pitaevskii Hierarchy with A Quadratic Trap
具有二次陷阱的 Gross-Pitaevskii 层次结构解的唯一性
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Xuwen Chen - 通讯作者:
Xuwen Chen
Copper-catalyzed one-pot reactions of acetyl chloride, o-halobenzoic acids and Wittig reagents toward 3-methyl isocoumarin synthesis
铜催化乙酰氯、邻卤苯甲酸和Wittig试剂的一锅反应合成3-甲基异香豆素
- DOI:
10.1039/c7ra06707k - 发表时间:
2017 - 期刊:
- 影响因子:3.9
- 作者:
Xuwen Chen;Yunyun Liu - 通讯作者:
Yunyun Liu
Methods of Harmonic Analysis Applied to Bose-Einstein Condensation
应用于玻色-爱因斯坦凝聚的调和分析方法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xuwen Chen - 通讯作者:
Xuwen Chen
High Regioselective Synthesis of N2-Substituted-1,2,3-triazole via N-Sulfonyl-1,2,3-triazole Coupling with Alcohol Catalyzed by in-situ Generated Sulfonic Acid
原位生成磺酸催化N-磺酰基-1,2,3-三唑与醇偶联高区域选择性合成N2-取代-1,2,3-三唑
- DOI:
10.6023/cjoc202209021 - 发表时间:
2023 - 期刊:
- 影响因子:1.9
- 作者:
Jianye Ji;Jinhua Liu;Cong Guan;Xuwen Chen;Y. Zhao;Shunying Liu - 通讯作者:
Shunying Liu
Xuwen Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuwen Chen', 18)}}的其他基金
From Quantum Many-Body Dynamics to Energy-Critical Nonlinear Schrodinger Equations and Back
从量子多体动力学到能量关键的非线性薛定谔方程以及返回
- 批准号:
2005469 - 财政年份:2020
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
相似国自然基金
基于公共数据挖掘的工业场地风险关键驱动因子作用机制研究
- 批准号:42307576
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
滨海高盐低渗场地LNAPLs污染物赋存状态识别与运移机制研究
- 批准号:42372335
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于CPTU原位测试的污染场地土-膨润土隔离墙工程特性评价及防渗性能辨识研究
- 批准号:42302320
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
- 批准号:52378474
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
交通循环荷载高填黄土场地桩-土界面力学性能弱化与累积沉降研究
- 批准号:42362033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 16.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 16.23万 - 项目类别:
Research Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2345533 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2206085 - 财政年份:2022
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
Novel Mechanisms that Restore Cardiac Parasympathetic Activity Limits Arrhythmias and Cardiac Dysfunction After Myocardial Infarction
恢复心脏副交感神经活动的新机制可限制心肌梗死后的心律失常和心脏功能障碍
- 批准号:
10366054 - 财政年份:2020
- 资助金额:
$ 16.23万 - 项目类别: