ATD: The Foundations of Dynamic Drone-Based Threat Detection
ATD:基于无人机的动态威胁检测的基础
基本信息
- 批准号:1737744
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Drone-based threat detection enables unprecedented coverage and flexibility in understanding human dynamics, with applications to real-time identification of unusual events and forecast of future threats. With these new possibilities come unique challenges, from highly dynamic scene changes to the need for low-cost operation. This project focuses on the foundations of video analysis technology for such dynamic drone-based threat detection. The work ranges from mathematical foundations in the area of learning and modeling to applications such as people tracking and identification. In terms of data, the project includes collection and analysis of drone-based video data, sharing data and the developed code with the community at large. The project will not only contribute to the emerging area of drone-based threat analysis but will also provide fundamental building blocks for modern visual data exploitation. Components of this project will be incorporated in online image-processing classes. The work investigates fundamental problems motivated by drone-based video analysis, including orientation invariance, image hashing, multi-modality modeling, and progressive unsupervised self-learning. The project develops and exploits underlying mathematical foundations, such as subspace modeling and invariant filter design. All the work has efficiency as its goal; this being manifested from the development of memory and computationally efficient forest hashing to the development of oriented response networks with significantly reduced deep models for orientation invariance. To enable state-of-the-art performance, the project utilizes successful machine learning frameworks, including deep convolution neural networks, random forests, hashing, and latent-SVM. This is approached with fundamental enabling redesigns and developments in the areas of robust learning, invariant learning, unsupervised self-learning, and multimodal hashing. The contributions are critical for data-limited learning, cross-modality learning, and computationally/memory efficient systems. The project aims to develop and exploit underlying mathematical foundations, such as subspace modeling, invariant filter design and learning, robust geometry-based learning, and information-based code aggregation. The theoretical and computational contributions are expected to result in efficient implementations of threat detection for dynamic environments, drone videos being a particularly important example.
基于无人机的威胁检测可以实现前所未有的覆盖范围和灵活性,以了解人类动态,并应用于对异常事件的实时识别和未来威胁的预测。随着这些新的可能性,从高度动态的场景变化到对低成本操作的需求,带来了独特的挑战。该项目着重于此类基于无人机的威胁检测的视频分析技术的基础。工作范围从学习和建模领域的数学基础到人们跟踪和识别等应用。在数据方面,该项目包括基于无人机的视频数据的收集和分析,与整个社区共享数据和开发的代码。该项目不仅将有助于基于无人机的威胁分析的新兴领域,而且还将为现代视觉数据开发提供基本的构建块。该项目的组件将纳入在线图像处理类中。这项工作调查了基于无人机的视频分析所激发的基本问题,包括方向不变性,图像散列,多模式建模和进步的无监督自学学习。该项目开发和利用了基础数学基础,例如子空间建模和不变滤波器设计。所有的工作都有效率作为目标;这是由于记忆和计算有效的森林哈希的发展而表现出来的,这些森林散发出了定向反应网络的开发,其方向不变性大大降低了。为了实现最先进的性能,该项目利用了成功的机器学习框架,包括深卷积神经网络,随机森林,哈希和潜在SVM。这是在强大的学习,不变学习,无监督的自学学习和多模式哈希的领域的基本重新设计和发展方面的基本联系。这些贡献对于数据限制的学习,跨模式学习和计算/内存有效系统至关重要。该项目旨在开发和利用潜在的数学基础,例如子空间建模,不变滤波器设计和学习,基于强大的几何学学习以及基于信息的代码汇总。预计理论和计算贡献将导致对动态环境的威胁检测有效实施,无人机视频是一个特别重要的例子。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting Adversarial Samples Using Influence Functions and Nearest Neighbors
- DOI:10.1109/cvpr42600.2020.01446
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Gilad Cohen;G. Sapiro;R. Giryes
- 通讯作者:Gilad Cohen;G. Sapiro;R. Giryes
Stop Memorizing: A Data-Dependent Regularization Framework for Intrinsic Pattern Learning
停止记忆:用于内在模式学习的数据依赖正则化框架
- DOI:10.1137/19m1236886
- 发表时间:2019
- 期刊:
- 影响因子:3.6
- 作者:Zhu, Wei;Qiu, Qiang;Wang, Bao;Lu, Jianfeng;Sapiro, Guillermo;Daubechies, Ingrid
- 通讯作者:Daubechies, Ingrid
Using text to teach image retrieval
使用文本教授图像检索
- DOI:10.1109/cvprw53098.2021.00180
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:H. Dong, Z. Wang
- 通讯作者:H. Dong, Z. Wang
Graph Convolution with Low-rank Learnable Local Filters
- DOI:
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Xiuyuan Cheng;Zichen Miao;Qiang Qiu
- 通讯作者:Xiuyuan Cheng;Zichen Miao;Qiang Qiu
Learning to Learn with Variational Information Bottleneck for Domain Generalization
- DOI:10.1007/978-3-030-58607-2_12
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Yingjun Du;Jun Xu;Huan Xiong;Qiang Qiu;Xiantong Zhen;Cees G. M. Snoek;Ling Shao
- 通讯作者:Yingjun Du;Jun Xu;Huan Xiong;Qiang Qiu;Xiantong Zhen;Cees G. M. Snoek;Ling Shao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillermo Sapiro其他文献
Noise-Resistant A(cid:14)ne Skeletons of Planar Curves (cid:3)
抗噪 A(cid:14)ne 平面曲线骨架 (cid:3)
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
S. Betelú;Guillermo Sapiro;Allen R. Tannenbaum;P. Giblin - 通讯作者:
P. Giblin
Geometric Partial Differential Equations and Image Analysis: Introduction
- DOI:
10.1017/cbo9780511626319.002 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Guillermo Sapiro - 通讯作者:
Guillermo Sapiro
1.17 Feeling and Body Investigators (FBI): An Interoceptive Exposure Treatment Approach for Young Children With Avoidant/Restrictive Food Intake Disorder (ARFID)
- DOI:
10.1016/j.jaac.2024.08.037 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Kara A. Washington;Elizabeth M. Monahan;Faith Joo;Ilana Pilato;Alannah M. Rivera-Cancel;Young Kyung Kim;Eli Rotondo;J. Matias Di Martino;Valerie Smith;Katharine L. Loeb;Debra K. Katzman;Marsha Marcus;Rachel Bryant-Waugh;Guillermo Sapiro;Nancy Zucker - 通讯作者:
Nancy Zucker
Detecting Adversarial Samples Using Influence Functions and Nearest Neighbors
使用影响函数和最近邻居检测对抗性样本
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Gilad Cohen;Guillermo Sapiro - 通讯作者:
Guillermo Sapiro
23.1 Autism and Beyond: Lessons From an Iphone Study of Young Children
- DOI:
10.1016/j.jaac.2018.07.145 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:
- 作者:
Helen L. Egger;Geraldine Dawson;Jordan Hashemi;Kimberly L.H. Carpenter;Guillermo Sapiro - 通讯作者:
Guillermo Sapiro
Guillermo Sapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillermo Sapiro', 18)}}的其他基金
CIF: Small: Foundations and Applications of Blind Subgroup Robustness
CIF:小:盲子群鲁棒性的基础和应用
- 批准号:
2120018 - 财政年份:2021
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
- 批准号:
2031849 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
CIF: AF: Small: Foundations of Multimodal Information Integration
CIF:AF:小型:多模式信息集成的基础
- 批准号:
1712867 - 财政年份:2017
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
AF: SMALL: Learning to Parsimoniously Model and Compute with Big Data
AF:SMALL:学习使用大数据进行简约建模和计算
- 批准号:
1318168 - 财政年份:2013
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Learning sparse representations for restoration and classification: Theory, Computations, and Applications in Image, Video, and Multimodal Analysis
学习用于恢复和分类的稀疏表示:图像、视频和多模态分析中的理论、计算和应用
- 批准号:
1249263 - 财政年份:2012
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Learning sparse representations for restoration and classification: Theory, Computations, and Applications in Image, Video, and Multimodal Analysis
学习用于恢复和分类的稀疏表示:图像、视频和多模态分析中的理论、计算和应用
- 批准号:
0829700 - 财政年份:2008
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
US-France Cooperative Research: Computational Tools for Brain Research
美法合作研究:脑研究的计算工具
- 批准号:
0404617 - 财政年份:2004
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Collaborative Research-ITR-High Order Partial Differential Equations: Theory, Computational Tools, and Applications in Image Processing, Computer Graphics, Biology, and Fluids
协作研究-ITR-高阶偏微分方程:理论、计算工具以及在图像处理、计算机图形学、生物学和流体中的应用
- 批准号:
0324779 - 财政年份:2003
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
ITR: Distances and Generalized Geodesics for High-Dimensional Implicit and Point Cloud Surfaces:Theory, Computational Framework, and Applications in Information Sciences and Eng.
ITR:高维隐式和点云表面的距离和广义测地线:理论、计算框架以及信息科学和工程中的应用。
- 批准号:
0309575 - 财政年份:2003
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
相似国自然基金
基于多维动态代谢组学技术的葡萄酒抗氧化功效物质基础及其作用机制研究
- 批准号:32371501
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肾病综合征P-gp动态变化介导雷公藤肾脏“效-毒”转化的物质基础及机制研究
- 批准号:82374138
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“整体-精准-动态”策略研究人参治疗气虚型肝癌的药效物质基础及作用机制
- 批准号:82304693
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
哺乳动物单核二倍体心肌细胞比例的演化动态及其遗传基础
- 批准号:32370463
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
重点生态功能区村镇环境基础设施配置的非均衡性:形成机理、环境效应与多目标动态调适
- 批准号:42371182
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
ERI: Evolution of Dynamic Behavior of Pile Foundations in Permafrost with Climate Change
ERI:永久冻土中桩基动态行为随气候变化的演变
- 批准号:
2347680 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Foundations of Anonymous Dynamic Networks
匿名动态网络的基础
- 批准号:
23K10985 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical foundations of cooperative learning as dynamic processes ofnetwork dynamics
合作学习作为网络动态过程的理论基础
- 批准号:
23K17619 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Artificial Intelligence for Dynamic, individualized CPR guidance: AID CPR
人工智能提供动态、个性化的心肺复苏指导:AID CPR
- 批准号:
10644648 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
- 批准号:
10723977 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别: