CAREER: Design and Understanding up from the Atomic Scale of Multivalent Intercalation Electrodes for High-Energy-Density Rechargeable Batteries
职业:从原子尺度设计和理解高能量密度可充电电池的多价插层电极
基本信息
- 批准号:1847552
- 负责人:
- 金额:$ 55.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There is a critical need for improved energy storage technologies for electric vehicles and large-scale integration of renewable electricity grid storage to improve domestic energy security. Currently, state-of-the-art energy storage technologies such as lithium-ion batteries have insufficient energy density and are too costly for broad use in these applications. Battery electrodes based on multivalent ions (e.g., aluminum ions or zinc ions) yield significant enhancements in electric charge storage capacity over monovalent (e.g., lithium-ion) electrodes. When paired with their corresponding metal electrodes, potentially transformative gains in energy density are possible. However, multivalent battery performance to date is lacking, in large part due to limited fundamental understanding and control of the complex electronic, chemical, and structural changes that the electrodes undergo upon continued charge and discharge cycles. Research efforts in this project will investigate the fundamental electrochemical processes that occur during the use of multivalent electrodes, yielding insights into how to design and realize rechargeable batteries with significantly enhanced energy storage properties. Rechargeable aluminum-ion and zinc-ion electrodes will be investigated as both aluminum and zinc metals are earth abundant, low-cost, non-flammable, non-toxic, and exhibit high volumetric charge storage capacity. The project also includes outreach efforts that will advance STEM education at the high school level by directly interacting with high school science teachers at a local high school via a "Battery Bootcamp". Outreach will stress the co-development of hands-on, age appropriate laboratory experiments for the high school students to use to help understand electrochemical engineering concepts. The project also will conduct a NMR School within the City University of New York (CUNY) for graduate students to incorporate this technique and other advanced spectroscopic methods to enrich their own respective research projects.The scientific and technological objectives of this research project are to (i) understand, up from the atomic scale, the processes and properties underpinning electrochemical intercalation of multivalent cations in crystalline transition metal compounds and (ii) to use this understanding to discover and optimize novel intercalation electrodes with significantly enhanced bulk energy storage properties. Aluminum-ion (Al3+) and zinc-ion (Zn2+) intercalation electrodes will be investigated to leverage the favorable electrochemical properties of aluminum and zinc metal while enabling the effects of differing ion valence and charge density to be studied. The electronic and crystalline structures of model transition metal compounds will be systematically varied, enabling investigations of their relationships to electrochemical intercalation phenomena from the molecular to the cell level. Subsequently, knowledge gained from model studies will be used to initiate targeted materials discovery efforts, wherein new electrode compositions and structures will be synthesized and explored for next-generation aluminum-ion and zinc-ion batteries. Novel multi-dimensional solid-state nuclear magnetic resonance (NMR) methods will yield new insights into the atomic-level environments, structures, and dynamics of intercalated cations and electrode frameworks, revealing ion intercalation and charge transfer mechanisms. Overall, this work is expected to establish and validate molecular design principles aimed at realizing multivalent intercalation electrodes with enhanced charge storage capacities, intercalation potentials, and rate properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
至关重要的是,需要改善电动汽车的能源储能技术,并大规模整合可再生电网存储以改善国内能源安全。当前,诸如锂离子电池等最先进的储能技术的能量密度不足,并且在这些应用中的广泛使用量太高。基于多价离子(例如铝离子或锌离子)的电池电极在单价(例如锂离子)电极上产生了电荷存储能力的显着增强。当与相应的金属电极配对时,可能会在能量密度上取得潜在的转化增长。但是,迄今为止缺乏多价电池性能,这在很大程度上是由于对复杂的电子,化学和结构变化的基本理解和控制有限,电极在继续充电和放电周期后经历了这些变化。该项目的研究工作将调查使用多价电极期间发生的基本电化学过程,从而有见解如何设计和实现具有显着增强能量存储特性的可充电电池。随着铝和锌金属的地球丰富,低成本,不易粘性,无毒,并且表现出高容量的电荷存储容量,将研究可充电铝合金和锌离子电极。该项目还包括外展工作,可以通过“电池启动训练营”与当地高中的高中科学老师进行直接互动,从而在高中进行STEM教育。外展将强调动手实践,适合年龄的实验室实验的共同开发,以便高中生用于帮助了解电化学工程概念。 The project also will conduct a NMR School within the City University of New York (CUNY) for graduate students to incorporate this technique and other advanced spectroscopic methods to enrich their own respective research projects.The scientific and technological objectives of this research project are to (i) understand, up from the atomic scale, the processes and properties underpinning electrochemical intercalation of multivalent cations in crystalline transition metal compounds and (ii)利用这种理解来发现并优化具有显着增强的大量储能特性的新型插入电极。将研究铝 - 离子(AL3+)和锌离子(Zn2+)插入电极,以利用铝和锌金属的有利的电化学特性,同时可以研究不同的离子价和被研究的电荷密度的影响。模型过渡金属化合物的电子和晶体结构将有系统地变化,从而可以研究它们与分子到细胞水平的电化学插入现象的关系。随后,从模型研究中获得的知识将用于启动目标材料发现工作,其中将合成新的电极组成和结构,并探索用于下一代铝制和锌离子电池。新型的多维固态核磁共振(NMR)方法将对插入式阳离子和电极框架的原子级环境,结构和动力学产生新的见解,从而揭示离子插入和电荷转移机制。总体而言,这项工作有望建立和验证分子设计原理,旨在实现具有增强的电荷存储能力,互插潜力和费率属性的多价互插电电。该奖项反映了NSF的法定任务,并通过使用该基金会的智力优点和广泛的影响来评估Criteria criteria criteria criteria criteria criteria审查。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Materials Compatibility in Rechargeable Aluminum Batteries: Chemical and Electrochemical Properties between Vanadium Pentoxide and Chloroaluminate Ionic Liquids
- DOI:10.1021/acs.chemmater.9b01556
- 发表时间:2019-08
- 期刊:
- 影响因子:8.6
- 作者:Xiaoyu Wen;Yuhang Liu;A. Jadhav;Jian Zhang;D. Borchardt;Jiayan Shi;B. Wong;B. Sanyal;R. Messi
- 通讯作者:Xiaoyu Wen;Yuhang Liu;A. Jadhav;Jian Zhang;D. Borchardt;Jiayan Shi;B. Wong;B. Sanyal;R. Messi
Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems
- DOI:10.1016/j.electacta.2022.140072
- 发表时间:2022-03-07
- 期刊:
- 影响因子:6.6
- 作者:Schoetz, T.;Gordon, L. W.;Messinger, R. J.
- 通讯作者:Messinger, R. J.
Quantitative Molecular-Level Understanding of Electrochemical Aluminum-Ion Intercalation into a Crystalline Battery Electrode
- DOI:10.1021/acsenergylett.0c01138
- 发表时间:2020-09-11
- 期刊:
- 影响因子:22
- 作者:Jadhav, Ankur L.;Xu, Jeffrey H.;Messinger, Robert J.
- 通讯作者:Messinger, Robert J.
Soluble Electrolyte-Coordinated Sulfide Species Revealed in Al–S Batteries by Nuclear Magnetic Resonance Spectroscopy
- DOI:10.1021/acs.chemmater.2c00248
- 发表时间:2022-05
- 期刊:
- 影响因子:8.6
- 作者:Rahul Jay;A. Jadhav;Leo W. Gordon;R. Messinger
- 通讯作者:Rahul Jay;A. Jadhav;Leo W. Gordon;R. Messinger
Interplay between coordination, dynamics, and conductivity mechanism in Mg/Al-catenated ionic liquid electrolytes
- DOI:10.1016/j.jpowsour.2022.231084
- 发表时间:2022-03
- 期刊:
- 影响因子:9.2
- 作者:Gioele Pagot;Mounesha G Garaga;A. Jadhav;Lauren F. O'Donnell;K. Vezzù;Boris Itin;R. Messinger;S. Greenbaum;V. Di Noto
- 通讯作者:Gioele Pagot;Mounesha G Garaga;A. Jadhav;Lauren F. O'Donnell;K. Vezzù;Boris Itin;R. Messinger;S. Greenbaum;V. Di Noto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Messinger其他文献
Robert Messinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Messinger', 18)}}的其他基金
Molecular Understanding of Ion Intercalation Processes in Rechargeable Aluminum-Carbon Batteries
可充电铝碳电池中离子嵌入过程的分子理解
- 批准号:
1706926 - 财政年份:2017
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
相似国自然基金
二维杂化体系多铁性的理解与设计
- 批准号:12304115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阴离子结合催化活性阳离子聚合的催化设计、机理理解和单体拓展研究
- 批准号:22371274
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
航空器可靠性设计的双时间模型与机理解析
- 批准号:52372424
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
交叉口新型混合交通流交互机理解析及协同优化设计研究
- 批准号:52372304
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氢氧化钙密化预处理高效解构木质纤维素的机理解译及理性设计
- 批准号:22308164
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
- 批准号:
2340777 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
Understanding Risk Heterogeneity Following Child Maltreatment: An Integrative Data Analysis Approach.
了解虐待儿童后的风险异质性:综合数据分析方法。
- 批准号:
10721233 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Seizure, cognitive change and dementia: Understanding the use and safety of anti-seizure medications
癫痫、认知改变和痴呆:了解抗癫痫药物的使用和安全性
- 批准号:
10740534 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Understanding the Molecular Basis of Translation Inhibition by SARS-CoV-2 NSP14 and its Role in SARS-CoV-2 Immune Evasion
了解 SARS-CoV-2 NSP14 翻译抑制的分子基础及其在 SARS-CoV-2 免疫逃避中的作用
- 批准号:
10427688 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别: