Collaborative Research: RI: Medium: A Rigorous, General Framework for Tractable Learning of Large-Scale DAGs from Data
协作研究:RI:Medium:从数据中轻松学习大规模 DAG 的严格通用框架
基本信息
- 批准号:1955532
- 负责人:
- 金额:$ 79.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in machine learning and artificial intelligence owe much of their success to the development of algorithms that learn complicated relationships and understanding complex phenomena from massive datasets. These algorithms have been successfully applied on a diverse array of applications, including medicine, genetics, robotics, marketing, finance, and, increasingly, in societal applications. Despite their many successes, however, these applications continue to suffer from security, transparency, fairness, and interpretability problems. Many of these practical challenges can be traced back to well-known limitations with respect to interpretability, causality, and false discoveries. At the same time, substantial progress has been made in recent years in our understanding of these practical challenges in relatively simple settings with only a few factors and comparatively simple models. This research seeks to integrate these efforts, in order to provide a flexible framework for flexible, interpretable, causal modeling from high-dimensional, complex datasets. The investigated approach specifically seeks to avoid spurious correlations that commonly appear in complex datasets, while retaining the flexibility of modern machine learning algorithms with an eye towards applications in medicine, biology, and finance.While many applications of machine learning have been driven by impressive advances in complex predictive models, at the same time a need has emerged for models that can extract causal information from massive, unlabeled datasets. Graphical models provide a principled and effective way to uncover this type knowledge from unlabeled data. Although the problem of learning undirected graphs has witnessed a series of remarkable advances over the past decade, directed acyclic graphs (DAGs) that encode directed, potentially causal information, have not benefited from these advances. As a result, there is a pressing need for novel and theoretically sound methods for learning DAGs that can capture complex, asymmetric relationships, reduce model complexity, and most importantly, learn causal relationships for human decision-makers and stakeholders. This project explores a new approach for learning DAGs from data that provides the basis for a general statistical and computational framework, which has been lacking thus far. The technical aims can be divided along three major axes: 1) Developing novel continuous relaxations of the combinatorial optimization problems that arise in structure learning problems, 2) Developing new tools for analyzing the behavior of optimization schemes in highly nonconvex settings, and 3) Theoretical advances in nonparametric causal modeling and its statistical properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习和人工智能的最新进展很大程度上归功于算法的开发,这些算法可以学习复杂的关系并从海量数据集中理解复杂的现象。这些算法已成功应用于各种应用,包括医学、遗传学、机器人、营销、金融,以及越来越多的社会应用。然而,尽管取得了许多成功,这些应用程序仍然面临安全性、透明度、公平性和可解释性问题。许多这些实际挑战可以追溯到可解释性、因果关系和错误发现方面众所周知的局限性。与此同时,近年来,我们在只有少数因素和相对简单的模型的相对简单的环境中对这些实际挑战的理解取得了实质性进展。这项研究旨在整合这些努力,以便为高维、复杂数据集的灵活、可解释、因果建模提供一个灵活的框架。所研究的方法特别旨在避免复杂数据集中常见的虚假相关性,同时保留现代机器学习算法的灵活性,着眼于医学、生物学和金融领域的应用。虽然机器学习的许多应用都是由复杂预测模型的令人印象深刻的进步推动的,但与此同时,也出现了对能够从大量未标记数据集中提取因果信息的模型的需求。图形模型提供了一种原则性且有效的方法来从未标记的数据中揭示此类知识。尽管学习无向图的问题在过去十年中取得了一系列显着的进步,但编码有向、潜在因果信息的有向无环图(DAG)并没有从这些进步中受益。因此,迫切需要新颖且理论上合理的 DAG 学习方法,这些方法可以捕获复杂、不对称的关系,降低模型复杂性,最重要的是,为人类决策者和利益相关者学习因果关系。该项目探索了一种从数据中学习 DAG 的新方法,为迄今为止缺乏的通用统计和计算框架提供了基础。技术目标可分为三个主轴:1) 开发结构学习问题中出现的组合优化问题的新颖连续松弛,2) 开发用于分析高度非凸设置中优化方案行为的新工具,以及 3) 非参数因果建模及其统计特性的理论进展。该奖项反映了 NSF 的法定使命,并通过使用评估方法被认为值得支持。 基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
IDENTIFIABILITY OF NONPARAMETRIC MIXTURE MODELS AND BAYES OPTIMAL CLUSTERING
- DOI:10.1214/19-aos1887
- 发表时间:2020-08-01
- 期刊:
- 影响因子:4.5
- 作者:Aragam, Bryon;Dan, Chen;Ravikumar, Pradeep
- 通讯作者:Ravikumar, Pradeep
Learning Latent Causal Graphs Via Mixture Oracles
通过混合预言学习潜在因果图
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kivva, B.;Rajendran, G.;Ravikumar, P.;Aragam, B.
- 通讯作者:Aragam, B.
RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning
- DOI:10.48550/arxiv.2205.12548
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Mingkai Deng;Jianyu Wang;Cheng-Ping Hsieh;Yihan Wang-;Han Guo;Tianmin Shu;Meng Song;E. Xing;Zhiting Hu
- 通讯作者:Mingkai Deng;Jianyu Wang;Cheng-Ping Hsieh;Yihan Wang-;Han Guo;Tianmin Shu;Meng Song;E. Xing;Zhiting Hu
On Learning Ising Models under Huber's Contamination Model
关于Huber污染模型下Ising模型的学习
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Prasad, Adarsh;Srinivasan, Vishwak;Balakrishnan, Sivaraman;Ravikumar, Pradeep
- 通讯作者:Ravikumar, Pradeep
Learning Sparse Nonparametric DAGs
- DOI:
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Xun Zheng;Chen Dan;Bryon Aragam;Pradeep Ravikumar;E. Xing
- 通讯作者:Xun Zheng;Chen Dan;Bryon Aragam;Pradeep Ravikumar;E. Xing
{{
                item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ patent.updateTime }}
Pradeep Ravikumar其他文献
Ordinal Graphical Models: A Tale of Two Approaches
序数图形模型:两种方法的故事
- DOI:10.5555/3305890.3306018 
- 发表时间:2017 
- 期刊:
- 影响因子:0
- 作者:A. Suggala;Eunho Yang;Pradeep Ravikumar 
- 通讯作者:Pradeep Ravikumar 
XMRF: an R package to fit Markov Networks to high-throughput genetics data
XMRF:一个 R 包,用于使马尔可夫网络适应高通量遗传学数据
- DOI:
- 发表时间:2015 
- 期刊:
- 影响因子:0
- 作者:Ying;Genevera I. Allen;Yulia Baker;Eunho Yang;Pradeep Ravikumar;Zhandong Liu 
- 通讯作者:Zhandong Liu 
Deep Density Destructors
深度密度破坏函数
- DOI:
- 发表时间:2018 
- 期刊:
- 影响因子:0
- 作者:David I. Inouye;Pradeep Ravikumar 
- 通讯作者:Pradeep Ravikumar 
Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images
非参数稀疏分层模型描述 V1 fMRI 对自然图像的响应
- DOI:
- 发表时间:2008 
- 期刊:
- 影响因子:0
- 作者:Pradeep Ravikumar;Vincent Q. Vu;Bin Yu;Thomas Naselaris;Kendrick Norris Kay;J. Gallant 
- 通讯作者:J. Gallant 
Learning Graphs with a Few Hubs - Supplementary
用几个中心学习图 - 补充
- DOI:
- 发表时间:2010 
- 期刊:
- 影响因子:0
- 作者:Rashish Tandon;Pradeep Ravikumar 
- 通讯作者:Pradeep Ravikumar 
Pradeep Ravikumar的其他文献
{{
              item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
{{ truncateString('Pradeep Ravikumar', 18)}}的其他基金
RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
- 批准号:2211907 
- 财政年份:2022
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
RI: Small: Non-parametric Machine Learning in the Age of Deep and High-Dimensional Models
RI:小:深度和高维模型时代的非参数机器学习
- 批准号:1909816 
- 财政年份:2019
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
- 批准号:1934584 
- 财政年份:2019
- 资助金额:$ 79.99万 
- 项目类别:Continuing Grant 
CAREER: A New Neat Framework for Statistical Machine Learning
职业:统计机器学习的新简洁框架
- 批准号:1661755 
- 财政年份:2016
- 资助金额:$ 79.99万 
- 项目类别:Continuing Grant 
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:1664720 
- 财政年份:2016
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
- 批准号:1661802 
- 财政年份:2016
- 资助金额:$ 79.99万 
- 项目类别:Continuing Grant 
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:1447574 
- 财政年份:2014
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
- 批准号:1264033 
- 财政年份:2013
- 资助金额:$ 79.99万 
- 项目类别:Continuing Grant 
RI: Small: Collaborative Research: Statistical ranking theory without a canonical loss
RI:小:协作研究:没有典型损失的统计排名理论
- 批准号:1320894 
- 财政年份:2013
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
CAREER: A New Neat Framework for Statistical Machine Learning
职业:统计机器学习的新简洁框架
- 批准号:1149803 
- 财政年份:2012
- 资助金额:$ 79.99万 
- 项目类别:Continuing Grant 
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:2312841 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:2312842 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:2313131 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:2313151 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Continuing Grant 
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:2312840 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:2345528 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:2232298 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:2312374 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:2312373 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:2232055 
- 财政年份:2023
- 资助金额:$ 79.99万 
- 项目类别:Standard Grant 

 刷新
              刷新
            
















 {{item.name}}会员
              {{item.name}}会员
            



