Linear Partial Differential Equations on Singular Spaces

奇异空间上的线性偏微分方程

基本信息

  • 批准号:
    2054424
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Many seemingly different physical phenomena such as light, sound propagation, and the motion of quantum particles are described in a mathematically unified manner as propagating waves. It is therefore of considerable practical importance to describe how waves oscillate and die off depending on the source producing them and the medium in which they propagate. The goal of this project is to investigate several questions surrounding the rate of wave decay, and in particular how it is influenced by the effects of diffraction, which occurs when the waves encounter sharp discontinuities in the medium. The questions of interest include those motivated by very small-scale physics (the hydrogen atom) and very large-scale physics (decay of waves on backgrounds arising in cosmology). The PI’s prior work on analyzing the effectiveness of computational methods used in modeling solutions to these equations in practical settings will be continued. Training of graduate students and postdoctoral fellows will be incorporated throughout the project.This project revolves around questions involving the decay rate of waves near their source in several settings. Of particular interest will be understanding the role of wave diffraction by rough media in the qualitative behavior and long-time decay rates of solutions to wave and Schrödinger equations. When studying the effects of the singularity of the Coulomb potential on the structure of the Dirac propagator for the hydrogen atom, diffractive effects will again play an important role. In spacetimes of interest in general relativity, the large-scale structure of spacetime effects on the decay of waves and the structure of their radiation patterns will be investigated. This project will further entail a study of the performance of numerical algorithms for computation of the scattering of waves, bringing to bear techniques of phase space analysis that have not previously been employed in these problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多表面上不同的物理现象,如光、声音的传播和量子粒子的运动,都用数学上统一的方式描述为传播波。因此,描述波是如何根据产生它们的源和传播它们的介质而振荡和消亡的,具有相当重要的实际意义。这个项目的目标是研究围绕波衰减率的几个问题,特别是当波在介质中遇到尖锐的不连续时,它是如何受到衍射效应的影响的。感兴趣的问题包括那些由非常小尺度的物理(氢原子)和非常大尺度的物理(宇宙学中产生的背景波的衰减)引起的问题。PI先前的工作将继续分析在实际设置中用于模拟这些方程解的计算方法的有效性。研究生和博士后的培养将贯穿整个项目。这个项目围绕着在几种情况下波源附近衰减率的问题展开。特别感兴趣的将是理解粗糙介质的波衍射在波和Schrödinger方程解的定性行为和长期衰减率中的作用。在研究库仑势的奇异性对氢原子狄拉克传播子结构的影响时,衍射效应将再次发挥重要作用。在广义相对论中感兴趣的时空中,将研究时空的大尺度结构对波的衰减及其辐射模式的结构的影响。该项目将进一步研究用于计算波散射的数值算法的性能,带来以前未在这些问题中使用的相空间分析技术。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Baroclinic tidal conversion: note on a paper of L.R.M. Maas
  • DOI:
    10.1017/jfm.2022.637
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    C. Wunsch;J. Wunsch
  • 通讯作者:
    C. Wunsch;J. Wunsch
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jared Wunsch其他文献

Spreading of Lagrangian Regularity on Rational Invariant Tori
Corrigendum to "Convergence of curve shortening flow to translating soliton"
“曲线缩短流与平移孤子的收敛性”的勘误表
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Beomjun Choi;K. Choi;P. Daskalopoulos;Oran Gannot;Jared Wunsch;Andrew Corbett;Huabin Ge;Bobo Hua;Ze Zhou;Simion Filip;Valentino Tosatti;F. Plinio;Ioannis Parissis;Paolo Aluffi;Zihua Guo;Kenji Nakanishi;Asher Auel;Alessandro Bigazzi;C. Böhning;H. G. Bothmer;Dimitrios Ntalampekos;Matthew Romney
  • 通讯作者:
    Matthew Romney
Diffraction of Singularities for the Wave Equation on Manifolds with Corners
带角流形上波动方程的奇异性衍射
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard B. Melrose;A. Vasy;Jared Wunsch
  • 通讯作者:
    Jared Wunsch
Caustics of Weakly Lagrangian Distributions
  • DOI:
    10.1007/s00023-021-01110-8
  • 发表时间:
    2021-09-30
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Seán Gomes;Jared Wunsch
  • 通讯作者:
    Jared Wunsch
Helmholtz quasi-resonances are unstable under most single-signed perturbations of the wave speed
亥姆霍兹拟共振在波速的大多数单符号扰动下是不稳定的。
  • DOI:
    10.1016/j.jde.2025.113441
  • 发表时间:
    2025-09-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Euan A. Spence;Jared Wunsch;Yuzhou Zou
  • 通讯作者:
    Yuzhou Zou

Jared Wunsch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jared Wunsch', 18)}}的其他基金

Conference on Microlocal Analysis and Applications
微局部分析与应用会议
  • 批准号:
    1830112
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Global Harmonic Analysis
全局谐波分析
  • 批准号:
    1810747
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    1600023
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Conference: Evolution Equations on Singular Spaces; Luminy, France; April 25-29, 2016
会议:奇异空间的演化方程;
  • 批准号:
    1600014
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
73rd Midwest PDE Seminar, May 10-11, 2014
第 73 届中西部 PDE 研讨会,2014 年 5 月 10-11 日
  • 批准号:
    1420160
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    1265568
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Emphasis Year in Algebraic and Smooth Microlocal Analysis
代数和平滑微局部分析的重点年份
  • 批准号:
    1137706
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    1001463
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    0700318
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    0401323
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
  • 批准号:
    EP/W004070/1
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Regularity Questions in Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的正则性问题
  • 批准号:
    2055244
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
  • 批准号:
    1956092
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Singularity formations in non linear partial differential equations
非线性偏微分方程中的奇异性形成
  • 批准号:
    2278691
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Analysis of Non-Linear Partial Differential Equations in Free Boundary Fluid Dynamics and Kinetic Theory
自由边界流体动力学和运动理论中非线性偏微分方程的分析
  • 批准号:
    1764177
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Structure of the solutions to non-linear hyperbolic partial differential equations derived from astrophysics
天体物理学非线性双曲偏微分方程解的结构
  • 批准号:
    18K03371
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Well-posedness of Partial Differential Equations Through Linear Programming
通过线性规划求解偏微分方程的适定性
  • 批准号:
    511707-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    University Undergraduate Student Research Awards
Non-linear partial differential equations: Bubbles, layers and stability
非线性偏微分方程:气泡、层和稳定性
  • 批准号:
    DP170103087
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Projects
Linear and nonlinear problems in dispersive Partial Differential Equations
色散偏微分方程中的线性和非线性问题
  • 批准号:
    1600942
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    1600023
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了