CIF: Small: Foundations and Applications of Blind Subgroup Robustness
CIF:小:盲子群鲁棒性的基础和应用
基本信息
- 批准号:2120018
- 负责人:
- 金额:$ 45.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine-learning algorithms may present discriminatory behavior across certain subgroups, meaning that segments of the overall population are measurably under-served by the model, rendering the decisions unfair. The most common approaches to address this challenge consider that the algorithm has access to a set of predefined protected subgroups during training, and the goal is to learn a model that satisfies a certain notion of fairness/robustness across these subgroups. Perfect fairness can, in general, only be achieved by degrading the performance of the benefited subgroups without necessarily improving the disadvantaged and protected ones. This conflicts with ethical and legal notions of no-harm fairness, which are appropriate where quality of service is paramount, for example in health. To address this, this work considers notions of fairness and subgroup robustness that guarantee no unnecessary harm is done to any subgroup. The project goes beyond this since it considers the case where the subgroups or demographics are not known a priori and might even change with time and algorithm deployment. The project brings these concepts of blind and no-harm subgroup robustness and fairness to the area of backwards compatibility, where the goal is to guarantee that new machine-learning algorithms are compatible with previous ones; and to the area of federated learning, where multiple sites share data for the sake of mutual benefit. Lastly, potential connections of the proposed blind and no unnecessary-harm subgroup robustness with causal inference are investigated. The project first formally studies blind and no-unnecessary-harm (Pareto optimal) subgroup robustness, where the machine-learning algorithm needs to be robust to all possible subgroups of the data (given a minimal subgroup size), without necessarily knowing in advance the subgroups' defining characteristics. This is formally studied, including the tradeoffs and costs of protecting unknown subgroups and the corresponding optimization algorithm; concepts of data and optimization uncertainty are also included to model potential sacrifices a subgroup can make in benefit of others. Such formal study of blind subgroup robustness is an emerging field in the machine-learning community, and this project provides a fundamental and unifying view of it, combining theory with practice and critical information for policy makers. The project then extends the work to the area of backwards compatibility, with the goal to make all potential subgroups equally backwards compatible; and to federated learning, where the subgroup fairness and robustness is considered both across the silos/participants and inside each silo itself. Finally, thanks to the close mathematical connection between invariant features and causality, the project further considers this proposed unifying framework of blind subgroup robustness to study connections between the automatically discovered critical subgroups, their features, and causality. Health applications provide a unique testbed for the frameworks developed here.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习算法可能会在某些子群体中表现出歧视性行为,这意味着总体人口的一部分明显没有得到模型的服务,从而导致决策不公平。解决这一挑战的最常见方法是考虑算法在训练期间可以访问一组预定义的受保护子组,目标是学习一个模型,该模型满足这些子组之间的某种公平/鲁棒性概念。一般来说,完美的公平只能通过降低受益群体的表现来实现,而不一定改善弱势群体和受保护群体。这与无伤害公平的道德和法律观念相冲突,这种观念适用于服务质量至关重要的领域,例如卫生领域。为了解决这个问题,本工作考虑了公平性和子群鲁棒性的概念,保证不对任何子群造成不必要的伤害。该项目超越了这一点,因为它考虑了子群体或人口统计数据不是先验的,甚至可能随着时间和算法部署而改变的情况。该项目将这些盲和无伤害子组鲁棒性和公平性的概念引入到向后兼容性领域,其目标是保证新的机器学习算法与以前的算法兼容;在联合学习领域,多个站点为了互惠互利共享数据。最后,研究了所提出的盲和无不必要伤害亚组鲁棒性与因果推理的潜在联系。该项目首先正式研究盲和无不必要伤害(帕累托最优)子群鲁棒性,其中机器学习算法需要对数据的所有可能子组(给定最小子组大小)具有鲁棒性,而不必事先知道子组的定义特征。正式研究了这一问题,包括保护未知子群的权衡和代价以及相应的优化算法;数据和优化不确定性的概念也被纳入模型的潜在牺牲,一个子群体可以为他人的利益。这种对盲子群鲁棒性的正式研究是机器学习社区的一个新兴领域,该项目提供了一个基本的和统一的观点,将理论与实践结合起来,为政策制定者提供了关键信息。然后,该项目将工作扩展到向后兼容性领域,目标是使所有潜在的子组同样向后兼容;在联邦学习中,子组的公平性和鲁棒性既要跨筒仓/参与者考虑,也要在每个筒仓内部考虑。最后,由于不变特征与因果关系之间的密切数学联系,该项目进一步考虑提出的盲子群鲁棒性统一框架,以研究自动发现的关键子群及其特征与因果关系之间的联系。健康应用程序为这里开发的框架提供了一个独特的测试平台。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimax Pareto Fairness: A Multi Objective Perspective
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Natalia Martínez;Martín Bertrán;G. Sapiro
- 通讯作者:Natalia Martínez;Martín Bertrán;G. Sapiro
Using text to teach image retrieval
使用文本教授图像检索
- DOI:10.1109/cvprw53098.2021.00180
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:H. Dong, Z. Wang
- 通讯作者:H. Dong, Z. Wang
Robust Hybrid Learning With Expert Augmentation
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Antoine Wehenkel;Jens Behrmann;Hsiang Hsu;G. Sapiro;Gilles Louppe and;J. Jacobsen
- 通讯作者:Antoine Wehenkel;Jens Behrmann;Hsiang Hsu;G. Sapiro;Gilles Louppe and;J. Jacobsen
Minimax Demographic Group Fairness in Federated Learning
- DOI:10.1145/3531146.3533081
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Afroditi Papadaki;Natalia Martínez;Martín Bertrán;G. Sapiro;Miguel R. D. Rodrigues
- 通讯作者:Afroditi Papadaki;Natalia Martínez;Martín Bertrán;G. Sapiro;Miguel R. D. Rodrigues
Instance based Generalization in Reinforcement Learning
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Martín Bertrán;Natalia Martínez;Mariano Phielipp;G. Sapiro
- 通讯作者:Martín Bertrán;Natalia Martínez;Mariano Phielipp;G. Sapiro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillermo Sapiro其他文献
Noise-Resistant A(cid:14)ne Skeletons of Planar Curves (cid:3)
抗噪 A(cid:14)ne 平面曲线骨架 (cid:3)
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
S. Betelú;Guillermo Sapiro;Allen R. Tannenbaum;P. Giblin - 通讯作者:
P. Giblin
Detecting Adversarial Samples Using Influence Functions and Nearest Neighbors
使用影响函数和最近邻居检测对抗性样本
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Gilad Cohen;Guillermo Sapiro - 通讯作者:
Guillermo Sapiro
23.1 Autism and Beyond: Lessons From an Iphone Study of Young Children
- DOI:
10.1016/j.jaac.2018.07.145 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:
- 作者:
Helen L. Egger;Geraldine Dawson;Jordan Hashemi;Kimberly L.H. Carpenter;Guillermo Sapiro - 通讯作者:
Guillermo Sapiro
Modality representation in the lumbar and cervical fasciculus gracilis of squirrel monkeys.
松鼠猴腰椎和颈椎纤细束的形态表征。
- DOI:
10.1016/0006-8993(69)90310-2 - 发表时间:
1969 - 期刊:
- 影响因子:2.9
- 作者:
B. Whitsel;L. Petrucelli;Guillermo Sapiro - 通讯作者:
Guillermo Sapiro
Shape Preserving Local Histogram Modication
形状保持局部直方图修改
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Vicent Caselles;J. Lisani;J. Morel;Guillermo Sapiro - 通讯作者:
Guillermo Sapiro
Guillermo Sapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillermo Sapiro', 18)}}的其他基金
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
- 批准号:
2031849 - 财政年份:2020
- 资助金额:
$ 45.11万 - 项目类别:
Continuing Grant
CIF: AF: Small: Foundations of Multimodal Information Integration
CIF:AF:小型:多模式信息集成的基础
- 批准号:
1712867 - 财政年份:2017
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
ATD: The Foundations of Dynamic Drone-Based Threat Detection
ATD:基于无人机的动态威胁检测的基础
- 批准号:
1737744 - 财政年份:2017
- 资助金额:
$ 45.11万 - 项目类别:
Continuing Grant
AF: SMALL: Learning to Parsimoniously Model and Compute with Big Data
AF:SMALL:学习使用大数据进行简约建模和计算
- 批准号:
1318168 - 财政年份:2013
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
Learning sparse representations for restoration and classification: Theory, Computations, and Applications in Image, Video, and Multimodal Analysis
学习用于恢复和分类的稀疏表示:图像、视频和多模态分析中的理论、计算和应用
- 批准号:
1249263 - 财政年份:2012
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
Learning sparse representations for restoration and classification: Theory, Computations, and Applications in Image, Video, and Multimodal Analysis
学习用于恢复和分类的稀疏表示:图像、视频和多模态分析中的理论、计算和应用
- 批准号:
0829700 - 财政年份:2008
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
US-France Cooperative Research: Computational Tools for Brain Research
美法合作研究:脑研究的计算工具
- 批准号:
0404617 - 财政年份:2004
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
Collaborative Research-ITR-High Order Partial Differential Equations: Theory, Computational Tools, and Applications in Image Processing, Computer Graphics, Biology, and Fluids
协作研究-ITR-高阶偏微分方程:理论、计算工具以及在图像处理、计算机图形学、生物学和流体中的应用
- 批准号:
0324779 - 财政年份:2003
- 资助金额:
$ 45.11万 - 项目类别:
Continuing Grant
ITR: Distances and Generalized Geodesics for High-Dimensional Implicit and Point Cloud Surfaces:Theory, Computational Framework, and Applications in Information Sciences and Eng.
ITR:高维隐式和点云表面的距离和广义测地线:理论、计算框架以及信息科学和工程中的应用。
- 批准号:
0309575 - 财政年份:2003
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
- 批准号:
2315725 - 财政年份:2023
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308446 - 财政年份:2023
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
CIF: Small: Impact of radiation trapping on sensing and communication systems in the THz, infrared, and optical regime - foundations, challenges, and opportunities
CIF:小:辐射捕获对太赫兹、红外和光学领域传感和通信系统的影响 - 基础、挑战和机遇
- 批准号:
2320937 - 财政年份:2023
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications
合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用
- 批准号:
2207547 - 财政年份:2022
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications
合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用
- 批准号:
2207548 - 财政年份:2022
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
CIF: Small: Foundations of Decentralized Data Science: Optimizing Utility, Privacy and Communication Efficiency
CIF:小型:去中心化数据科学的基础:优化实用性、隐私和通信效率
- 批准号:
2213223 - 财政年份:2022
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
CIF: Small: Foundations of Serverless Computing: Optimizing Latency and Utility
CIF:小型:无服务器计算的基础:优化延迟和实用性
- 批准号:
2007669 - 财政年份:2020
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant