SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
基本信息
- 批准号:2131946
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph Neural Networks (GNNs) have emerged as one of the most powerful techniques for next-generation learning systems, and are gaining attention in many high-impact domains such as graph mining (graph machine, graph clustering), biology (drug discovery, disease classification), traffic networks (traffic prediction), recommendation systems (user-item prediction, social recommendation), e-commerce analysis, stock market prediction, natural language processing (text classification, neural machine translation), image processing (image classification, object detection, semantic segmentation), and autonomous systems, among many others. The explosive growth of these applications has created an enormous demand for customized accelerator design to satisfy the computational requirements of GNNs, since many of these applications require high-throughput and energy-efficient GNN inference. Conventional deep neural network (DNN) accelerators cannot efficiently process GNNs due to the combination of irregular memory accesses, dynamic parallelism imposed by the graph structure, and the dense computation in learning algorithms. This project addresses these challenges with a holistic design framework spanning architecture study, Network-on-Chip (NoC) design, machine-learning algorithms development, and algorithm-architecture co-optimization with the aim of designing energy-efficient and high-performance accelerator architectures for GNNs. The cross-cutting nature of this project will offer valuable insights and solutions to many critical problems in GNN accelerator design. The research will also play a major role in education by integrating discovery with teaching and training. The outcomes of this project will be widely disseminated to researchers, engineers, and educators through technical publications and presentations. The goal of this project is to develop GNN accelerators with much-improved performance and energy efficiency for a wide variety of graph-based machine learning applications. To achieve this goal, this project proposes: (1) the design of a morphable GNN accelerator architecture and a reconfigurable NoC to satisfy the computational demands of various GNNs, (2) the development of a GNN accelerator/algorithm co-optimization exploration framework to maximize both inference accuracy and performance (latency, area, energy, etc.) for given graph-based machine learning tasks, (3) the development of an extensive modeling and simulation framework for GNN accelerators that will be used to validate the proposed design approach, and (4) the implementation of a small-scale prototype of the proposed accelerator using Field Programmable Gate Arrays (FPGAs) and its application to real-world problems. This timely research will greatly advance the state-of-the-art of GNN acceleration, benefit both the computing and machine-learning communities, and provide strong implications on advancements in society and the US computing industry-at-large.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Graph Neural Networks (GNNs) have emerged as one of the most powerful techniques for next-generation learning systems, and are gaining attention in many high-impact domains such as graph mining (graph machine, graph clustering), biology (drug discovery, disease classification), traffic networks (traffic prediction), recommendation systems (user-item prediction, social recommendation), e-commerce analysis, stock market prediction, natural language processing (text classification,神经机器翻译),图像处理(图像分类,对象检测,语义分割)和自动源系统等。这些应用程序的爆炸性增长已经对定制的加速器设计产生了巨大的需求,以满足GNN的计算要求,因为这些应用程序中的许多需要高通量和节能的GNN推断。传统的深神经网络(DNN)加速器无法有效地处理GNN,因为不规则的内存访问,图形结构施加的动态并行性以及学习算法中的密集计算。该项目通过整体设计框架,跨越建筑研究,网络芯片(NOC)设计,机器学习算法开发以及算法 - 构造协会的共临时来解决这些挑战。该项目的横切性质将为GNN加速器设计中许多关键问题提供宝贵的见解和解决方案。这项研究还将通过将发现与教学和培训相结合,在教育中发挥重要作用。该项目的结果将通过技术出版物和演示文稿广泛传播给研究人员,工程师和教育者。该项目的目的是为各种基于图形的机器学习应用程序开发具有大量的性能和能源效率的GNN加速器。为了实现这一目标,该项目提出:(1)设计可变形的GNN加速器体系结构和可重新配置的NOC以满足各种GNN的计算需求,(2)开发GNN Accelerator/Algorithm Co-Optimigation探索框架的开发,以最大程度地开发精确性和表现,以最大程度地进行精确的范围(能量),以构建了范围,3个机器,3个机器,3个机器,3。用于GNN加速器的广泛建模和仿真框架,该框架将用于验证提出的设计方法,以及(4)使用现场可编程门阵列(FPGA)及其在现实世界中的应用,实现了建议的加速器的小规模原型。这项及时的研究将极大地推动GNN加速的最先进,受益于计算和机器学习社区,并对社会的进步和美国计算行业的进步产生强烈的影响。这项奖项反映了NSF的法定使命,并通过该基金会的知识优点和广泛的影响来评估NSF的法定任务,并通过评估值得进行评估。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adapt-Flow: A Flexible DNN Accelerator Architecture for Heterogeneous Dataflow Implementation
Adapt-Flow:用于异构数据流实现的灵活 DNN 加速器架构
- DOI:10.1145/3526241.3530311
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Jiaqi;Zheng, Hao;Louri, Ahmed
- 通讯作者:Louri, Ahmed
AGAPE: Anomaly Detection with Generative Adversarial Network for Improved Performance, Energy, and Security in Manycore Systems
- DOI:10.23919/date54114.2022.9774693
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Ke Wang;Hao Zheng;Yuan Li;Jiajun Li;A. Louri
- 通讯作者:Ke Wang;Hao Zheng;Yuan Li;Jiajun Li;A. Louri
FSA: An Efficient Fault-tolerant Systolic Array-based DNN Accelerator Architecture
- DOI:10.1109/iccd56317.2022.00086
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Yingnan Zhao;Ke Wang;A. Louri
- 通讯作者:Yingnan Zhao;Ke Wang;A. Louri
GShuttle: Optimizing Memory Access Efficiency for Graph Convolutional Neural Network Accelerators
- DOI:10.1007/s11390-023-2875-9
- 发表时间:2023-01
- 期刊:
- 影响因子:0.7
- 作者:Jiajun Li;Ke Wang;Hao Zheng;A. Louri
- 通讯作者:Jiajun Li;Ke Wang;Hao Zheng;A. Louri
Nanoscale Accelerators for Artificial Neural Networks
- DOI:10.1109/mnano.2022.3208757
- 发表时间:2022-12
- 期刊:
- 影响因子:1.6
- 作者:Farzad Niknia;Ziheng Wang;Shanshan Liu;Ahmed Louri;Fabrizio Lombardi
- 通讯作者:Farzad Niknia;Ziheng Wang;Shanshan Liu;Ahmed Louri;Fabrizio Lombardi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Louri其他文献
Ahmed Louri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Louri', 18)}}的其他基金
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324644 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311543 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
- 批准号:
1953980 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
- 批准号:
1901165 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
- 批准号:
1812495 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
- 批准号:
1702980 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1547034 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
- 批准号:
1547036 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
弹性流体的小初值整体解
- 批准号:12201122
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ACQ荧光探针研究纳米尺度的黄芩苷-小檗碱复合物微粒“整体转运均衡释放”的口服吸收特性
- 批准号:81803739
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
带物理小参数的Euler-Poisson方程组及Euler-Maxwell方程组的整体收敛性和稳定性
- 批准号:11671295
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
非线性高阶波动方程组
- 批准号:11226177
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
“非牛顿流体”色谱理论的探索及其在液相色谱聚合物整体柱低压、高效分离小分子中的实践研究
- 批准号:21175031
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
SHF: Small: Towards a Holistic Causal Model for Continuous Software Traceability
SHF:小型:迈向连续软件可追溯性的整体因果模型
- 批准号:
2007246 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small: Holistic Analysis: integrating the semantics of the world and the code
SHF:Small:整体分析:整合世界语义和代码
- 批准号:
1853374 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small: Holistic Analysis: integrating the semantics of the world and the code
SHF:Small:整体分析:整合世界语义和代码
- 批准号:
1718040 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1420718 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant