CAREER: Atomic scale understanding of the doping incorporation and transport properties in ultrawide band gap semiconductors

职业:从原子尺度理解超宽带隙半导体的掺杂掺入和输运特性

基本信息

  • 批准号:
    2145091
  • 负责人:
  • 金额:
    $ 64.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Nontechnical Description: Improving power conversion efficiency in a wide range of applications including consumer appliances, all-electric and hybrid-electric vehicles, and extraction and conversion in cost-effective renewable energy sources can save energy, significantly reducing costs, benefiting both the economy and environment. The potential material system for revolutionizing power electronics components is ultra-wide bandgap semiconductors, a class of semiconductors with large bandgap energy. Enhancing their performance relies on critical understanding of mechanisms to efficiently generate and control charge carriers and how these carriers interact within the materials. This project reveals and describes “what really happens” at the scale of charge carriers and microstructures within these material systems, including the dopant-defect interaction and how these atomic scale features affect the electrical functionalities. This work is made possible by an innovative approach that integrates a three-dimensional atomic scale imaging tool, atom probe tomography with statistical and computational modeling on the atomic scale data, establishing a direct link with the electrical conductivity that would be difficult to identify and mitigate otherwise. The principal investigator strives to inspire students at undergraduate and graduate levels, especially women and underrepresented minorities, to pursue a career in materials science and engineering by exposing them to the exciting development of advanced materials to solve important societal problems. The principal investigator will also increase awareness of advanced material characterization to generate smart data for material design and development by organizing summer workshops and symposium. Coursework will emphasize multidisciplinary approaches to teach engineering concepts and connect them with real-world applications to solve challenges for the advancement of society.Technical description: This research project will provide a fundamental understanding of electrical transport properties in ultra-wide band gap semiconductors to advance high power electronics and clean energy technologies. Ultra-wide bandgap semiconductor technology is hindered by the lack of knowledge of the dopant incorporation on electrical functionalities and identification and detection of atomic scale features contributing to charge compensation. A novel framework will be developed to detect and quantify dopant solubility, dopant diffusion, impurities, vacancies, and defect complexes by leveraging atom probe tomography coupled with machine learning and statistical modeling on microscopy data. The overarching goal is to generate know-how on the impact of microstructures on electrical transport, beyond the limits of existing techniques. This research aspires to transform the doping engineering and electrical conductivity optimization by: i) developing novel methodologies that can characterize dopant incorporation and dopant-defect interaction that leads to charge compensation with unprecedented resolution and precision; ii) gaining new insight into how atomic to nanoscale structures and defects impacts the electrical transport; iii) validating existing theories on charge compensation and providing important inputs for further developing material structure-chemistry for power electronics and clean energy generation, and iv) acquiring new knowledge on material structure and chemistry to aid the principles and design criteria to achieve outstanding material performance in ultra-wide bandgap semiconductors and beyond. The closely integrated research and education components provide interdisciplinary training opportunities for undergraduate and graduate students on advanced microscopy, machine learning modeling, and ultra-wide bandgap semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》的全部或部分资助的(公共法117-2)。非技术描述:提高了在包括消费者设备,全电动和混合电动机的各种应用中的功率转换效率,以及在成本效益的可恢复能源能源源成本中,降低了能源的成本,以及降低了能源的成本,并使能源降低了。革命电力电子组件的潜在材料系统是超宽的带隙半导体,这是一类具有较大带隙能的半导体。提高其性能依赖于对机制的批判性理解,以有效地产生和控制荷载体以及这些载体如何在材料中相互作用。该项目揭示并描述了这些材料系统中电荷载体和微观结构的规模的“真正发生的事情”,包括掺杂剂缺陷的相互作用以及这些原子量表特征如何影响电函数。通过一种创新方法,将三维原子尺度成像工具,原子探针断层扫描与原子量表数据进行统计和计算建模,与电导率直接联系,而这些电导率很难识别和减轻,这项工作使这项工作成为可能。首席研究人员努力激发学生在本科生和研究生层面,尤其是妇女和代表性不足的少数群体的学生,从而从事材料科学和工程学的职业,通过使他们面临令人兴奋的高级材料发展以解决重要的社会问题。首席研究者还将通过组织夏季研讨会和研讨会来提高对先进材料表征的认识,以生成材料设计和开发的智能数据。课程工作将强调教学工程概念的多学科方法,并将其与现实世界的应用联系起来,以解决社会发展的挑战。技术描述:该研究项目将提供对超宽带隙半导体中电气传输属性的基本理解,以推动高电力电子和清洁能源技术。由于缺乏对电函数的掺杂剂基础设施的知识以及原子量表特征的识别和检测有助于收费补偿的特征,因此阻碍了超宽的带隙半导体技术。通过利用原子探针层析成像以及机器学习和显微镜数据的统计模型,将开发一个新的框架来检测和量化掺杂剂溶解度,掺杂剂扩散,杂质,空缺和缺陷复合物。总体目标是在现有技术的限制之外生成有关微观结构对电气传输的影响的知识。这项研究愿意通过以下方式改变兴奋剂工程和电导率优化,i)开发出可以表征掺杂基础架构和掺杂剂缺陷相互作用的新型方法,从而导致以前所未有的分辨率和精度为补偿; ii)获得有关原子到纳米级结构和缺陷如何影响电子传输的新见解; iii)验证有关电荷补偿的现有理论,并提供重要的投入,以进一步开发电力电子和清洁能源的材料结构化学化学,以及iv)获得有关材料结构和化学的新知识,以帮助原理和设计标准,以实现超大范围的带盖半导体和超越超强的材料性能。密切的综合研究和教育组成部分为高级显微镜,机器学习建模和超宽的带盖式半导体提供了本科和研究生的跨学科培训机会。这项奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子的智力和更广泛的影响来评估的支持,并被认为是值得的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baishakhi Mazumder其他文献

Probing Heterogeneity in Bovine Enamel Composition through Nanoscale Chemical Imaging using Atom Probe Tomography
  • DOI:
    10.1016/j.archoralbio.2020.104682
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Olivia Licata;Upoma Guha;Jonathan D. Poplawsky;Nirupam Aich;Baishakhi Mazumder
  • 通讯作者:
    Baishakhi Mazumder
Analysis of Vegard’s law for lattice matching In<sub>x</sub>Al<sub>1−x</sub>N to GaN by metalorganic chemical vapor deposition
  • DOI:
    10.1016/j.jcrysgro.2017.06.008
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Humberto M. Foronda;Baishakhi Mazumder;Erin C. Young;Matthew A. Laurent;Youli Li;Steven P. DenBaars;James S. Speck
  • 通讯作者:
    James S. Speck

Baishakhi Mazumder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baishakhi Mazumder', 18)}}的其他基金

Atomic Scale to Micro Scale Understanding of Low Temperature Degradation Mechanism in Zirconia-Based Ceramics
从原子尺度到微观尺度理解氧化锆基陶瓷的低温降解机制
  • 批准号:
    2114595
  • 财政年份:
    2021
  • 资助金额:
    $ 64.25万
  • 项目类别:
    Standard Grant

相似国自然基金

面向多源和大规模数据集的多元合金原子移动性参数数据库的自动化建立方法及其应用
  • 批准号:
    52101028
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
面向多源和大规模数据集的多元合金原子移动性参数数据库的自动化建立方法及其应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模单原子集成
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    80 万元
  • 项目类别:
    重大研究计划
氮掺杂碳负载过渡金属单原子催化剂的规模化制备及其高性能电还原CO2
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于兰州强流重离子加速器装置的丰中子重核及超重核结构的研究
  • 批准号:
    U1832139
  • 批准年份:
    2018
  • 资助金额:
    54.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

CAREER: Atomic-Scale Origins of Fast Ion Conduction through Complex Solid-State Electrochemical Interfaces
职业:通过复杂固态电化学界面快速离子传导的原子尺度起源
  • 批准号:
    2239598
  • 财政年份:
    2023
  • 资助金额:
    $ 64.25万
  • 项目类别:
    Continuing Grant
CAREER: Design and Understanding up from the Atomic Scale of Multivalent Intercalation Electrodes for High-Energy-Density Rechargeable Batteries
职业:从原子尺度设计和理解高能量密度可充电电池的多价插层电极
  • 批准号:
    1847552
  • 财政年份:
    2019
  • 资助金额:
    $ 64.25万
  • 项目类别:
    Standard Grant
CAREER: Atomic Scale Design of van der Waals Heterostructure Nanoribbons
职业:范德华异质结构纳米带的原子尺度设计
  • 批准号:
    1453924
  • 财政年份:
    2015
  • 资助金额:
    $ 64.25万
  • 项目类别:
    Continuing Grant
CAREER: Atomic-Scale Visualization of Excitonic States in Individual Carbon Nanotubes
职业:单个碳纳米管中激子态的原子尺度可视化
  • 批准号:
    1454036
  • 财政年份:
    2015
  • 资助金额:
    $ 64.25万
  • 项目类别:
    Continuing Grant
CAREER: Atomic Scale Defect Engineering in Graphene Membranes
职业:石墨烯膜的原子尺度缺陷工程
  • 批准号:
    1464616
  • 财政年份:
    2014
  • 资助金额:
    $ 64.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了