CAREER: Atomic scale understanding of the doping incorporation and transport properties in ultrawide band gap semiconductors
职业:从原子尺度理解超宽带隙半导体的掺杂掺入和输运特性
基本信息
- 批准号:2145091
- 负责人:
- 金额:$ 64.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Nontechnical Description: Improving power conversion efficiency in a wide range of applications including consumer appliances, all-electric and hybrid-electric vehicles, and extraction and conversion in cost-effective renewable energy sources can save energy, significantly reducing costs, benefiting both the economy and environment. The potential material system for revolutionizing power electronics components is ultra-wide bandgap semiconductors, a class of semiconductors with large bandgap energy. Enhancing their performance relies on critical understanding of mechanisms to efficiently generate and control charge carriers and how these carriers interact within the materials. This project reveals and describes “what really happens” at the scale of charge carriers and microstructures within these material systems, including the dopant-defect interaction and how these atomic scale features affect the electrical functionalities. This work is made possible by an innovative approach that integrates a three-dimensional atomic scale imaging tool, atom probe tomography with statistical and computational modeling on the atomic scale data, establishing a direct link with the electrical conductivity that would be difficult to identify and mitigate otherwise. The principal investigator strives to inspire students at undergraduate and graduate levels, especially women and underrepresented minorities, to pursue a career in materials science and engineering by exposing them to the exciting development of advanced materials to solve important societal problems. The principal investigator will also increase awareness of advanced material characterization to generate smart data for material design and development by organizing summer workshops and symposium. Coursework will emphasize multidisciplinary approaches to teach engineering concepts and connect them with real-world applications to solve challenges for the advancement of society.Technical description: This research project will provide a fundamental understanding of electrical transport properties in ultra-wide band gap semiconductors to advance high power electronics and clean energy technologies. Ultra-wide bandgap semiconductor technology is hindered by the lack of knowledge of the dopant incorporation on electrical functionalities and identification and detection of atomic scale features contributing to charge compensation. A novel framework will be developed to detect and quantify dopant solubility, dopant diffusion, impurities, vacancies, and defect complexes by leveraging atom probe tomography coupled with machine learning and statistical modeling on microscopy data. The overarching goal is to generate know-how on the impact of microstructures on electrical transport, beyond the limits of existing techniques. This research aspires to transform the doping engineering and electrical conductivity optimization by: i) developing novel methodologies that can characterize dopant incorporation and dopant-defect interaction that leads to charge compensation with unprecedented resolution and precision; ii) gaining new insight into how atomic to nanoscale structures and defects impacts the electrical transport; iii) validating existing theories on charge compensation and providing important inputs for further developing material structure-chemistry for power electronics and clean energy generation, and iv) acquiring new knowledge on material structure and chemistry to aid the principles and design criteria to achieve outstanding material performance in ultra-wide bandgap semiconductors and beyond. The closely integrated research and education components provide interdisciplinary training opportunities for undergraduate and graduate students on advanced microscopy, machine learning modeling, and ultra-wide bandgap semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。非技术描述:在包括消费电器、全电动和混合动力汽车在内的广泛应用中提高功率转换效率,以及在具有成本效益的可再生能源中提取和转换,可以节省能源,显着降低成本,有利于经济和环境。极有可能革新电力电子元件的材料体系是超宽带隙半导体,这是一类具有大带隙能量的半导体。提高它们的性能依赖于对有效产生和控制载流子的机制的关键理解,以及这些载流子如何在材料中相互作用。该项目揭示并描述了这些材料系统中载流子和微结构尺度上“真正发生的事情”,包括掺杂-缺陷相互作用以及这些原子尺度特征如何影响电功能。这项工作是通过一种创新的方法实现的,该方法将三维原子尺度成像工具、原子探针断层扫描与原子尺度数据的统计和计算建模相结合,建立了与电导率的直接联系,否则很难识别和减轻电导率。首席研究员致力于激励本科生和研究生,特别是女性和少数族裔,通过让他们接触先进材料的令人兴奋的发展来解决重要的社会问题,从而追求材料科学和工程方面的职业生涯。首席研究员还将通过组织夏季讲习班和研讨会,提高对先进材料特性的认识,为材料设计和开发生成智能数据。课程将强调多学科方法来教授工程概念,并将其与现实世界的应用联系起来,以解决社会进步的挑战。技术描述:该研究项目将提供对超宽带隙半导体电输运特性的基本理解,以推进高功率电子和清洁能源技术。超宽带隙半导体技术由于缺乏对掺杂剂在电功能上的掺入以及对有助于电荷补偿的原子尺度特征的识别和检测方面的知识而受到阻碍。将开发一个新的框架,通过利用原子探针断层扫描结合机器学习和显微镜数据统计建模来检测和量化掺杂的溶解度、掺杂扩散、杂质、空位和缺陷复合物。总体目标是超越现有技术的限制,产生有关微观结构对电传输影响的专门知识。本研究旨在通过以下方式改变掺杂工程和电导率优化:i)开发新的方法来表征掺杂和掺杂-缺陷相互作用,从而以前所未有的分辨率和精度实现电荷补偿;Ii)获得关于原子到纳米级结构和缺陷如何影响电传输的新见解;Iii)验证电荷补偿的现有理论,并为进一步发展电力电子和清洁能源发电的材料结构化学提供重要的输入;iv)获取材料结构和化学的新知识,以帮助在超宽带隙半导体及其他领域实现卓越材料性能的原理和设计标准。紧密结合的研究和教育组件为本科生和研究生提供了跨学科的培训机会,包括高级显微镜、机器学习建模和超宽带隙半导体。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baishakhi Mazumder其他文献
Probing Heterogeneity in Bovine Enamel Composition through Nanoscale Chemical Imaging using Atom Probe Tomography
- DOI:
10.1016/j.archoralbio.2020.104682 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:
- 作者:
Olivia Licata;Upoma Guha;Jonathan D. Poplawsky;Nirupam Aich;Baishakhi Mazumder - 通讯作者:
Baishakhi Mazumder
Analysis of Vegard’s law for lattice matching In<sub>x</sub>Al<sub>1−x</sub>N to GaN by metalorganic chemical vapor deposition
- DOI:
10.1016/j.jcrysgro.2017.06.008 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Humberto M. Foronda;Baishakhi Mazumder;Erin C. Young;Matthew A. Laurent;Youli Li;Steven P. DenBaars;James S. Speck - 通讯作者:
James S. Speck
Baishakhi Mazumder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baishakhi Mazumder', 18)}}的其他基金
Atomic Scale to Micro Scale Understanding of Low Temperature Degradation Mechanism in Zirconia-Based Ceramics
从原子尺度到微观尺度理解氧化锆基陶瓷的低温降解机制
- 批准号:
2114595 - 财政年份:2021
- 资助金额:
$ 64.25万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Atomic-Scale Origins of Fast Ion Conduction through Complex Solid-State Electrochemical Interfaces
职业:通过复杂固态电化学界面快速离子传导的原子尺度起源
- 批准号:
2239598 - 财政年份:2023
- 资助金额:
$ 64.25万 - 项目类别:
Continuing Grant
CAREER: Design and Understanding up from the Atomic Scale of Multivalent Intercalation Electrodes for High-Energy-Density Rechargeable Batteries
职业:从原子尺度设计和理解高能量密度可充电电池的多价插层电极
- 批准号:
1847552 - 财政年份:2019
- 资助金额:
$ 64.25万 - 项目类别:
Standard Grant
CAREER: Atomic Scale Design of van der Waals Heterostructure Nanoribbons
职业:范德华异质结构纳米带的原子尺度设计
- 批准号:
1453924 - 财政年份:2015
- 资助金额:
$ 64.25万 - 项目类别:
Continuing Grant
CAREER: Atomic-Scale Visualization of Excitonic States in Individual Carbon Nanotubes
职业:单个碳纳米管中激子态的原子尺度可视化
- 批准号:
1454036 - 财政年份:2015
- 资助金额:
$ 64.25万 - 项目类别:
Continuing Grant
CAREER: Atomic Scale Defect Engineering in Graphene Membranes
职业:石墨烯膜的原子尺度缺陷工程
- 批准号:
1464616 - 财政年份:2014
- 资助金额:
$ 64.25万 - 项目类别:
Standard Grant
CAREER: The Role of Grain Boundary Character in Corrosion Behavior: Linking Atomic Scale Interfacial Structure to Precipitation and Failure Mechanisms
职业:晶界特征在腐蚀行为中的作用:将原子尺度界面结构与沉淀和失效机制联系起来
- 批准号:
1150807 - 财政年份:2012
- 资助金额:
$ 64.25万 - 项目类别:
Standard Grant
CAREER: Atomic Scale Defect Engineering in Graphene Membranes
职业:石墨烯膜的原子尺度缺陷工程
- 批准号:
1054406 - 财政年份:2011
- 资助金额:
$ 64.25万 - 项目类别:
Standard Grant
CAREER: Visualizing the Formation of the Charge Density Wave Phase at the Atomic Scale
职业:在原子尺度上可视化电荷密度波相的形成
- 批准号:
1056527 - 财政年份:2011
- 资助金额:
$ 64.25万 - 项目类别:
Continuing Grant
CAREER: Atomic Scale Study of Reduction of Metal Oxides
职业:金属氧化物还原的原子尺度研究
- 批准号:
1056611 - 财政年份:2011
- 资助金额:
$ 64.25万 - 项目类别:
Standard Grant
CAREER: Towards an Atomic Scale Understanding of Spin Polarized Electron Transport
职业生涯:从原子尺度理解自旋极化电子传输
- 批准号:
0349108 - 财政年份:2004
- 资助金额:
$ 64.25万 - 项目类别:
Continuing Grant