CAREER: Engineering Ultra-Wide Bandgap III-Nitride Devices for Highly Efficient and Robust Electronics
职业:设计超宽带隙 III 族氮化物器件,实现高效、稳健的电子产品
基本信息
- 批准号:2145340
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The global demand for energy will likely significantly increase in the coming decades as more of the world gains access to electricity. This demand will need to be met without intensifying existing concerns over the environmental, societal, and economic impacts of climate change, which is influenced by the efficiency of power systems. Furthermore, since this efficiency is tied to losses associated with the semiconductor devices used in power electronics, the replacement of today’s silicon-based components with a novel semiconductor technology must be investigated. Wide bandgap semiconductors are candidates, however ultra-wide bandgap (UWBG) semiconductors represent the next frontier. In particular, aluminum-rich aluminum gallium nitride (AlGaN) offers an exciting opportunity to explore a new generation of highly efficient and robust electronic devices. The robustness of these devices in the face of elevated temperatures or electromagnetic interference (EMI) also stands to improve system performance and reliability. Thus far, a combination of unresolved scientific questions and technological barriers have prevented AlGaN devices from reaching their full potential. The recent commercialization of aluminum nitride (AlN) wafers, however, permits the ideal properties of AlGaN films to be studied for the first time. Thus, the research objective of this CAREER project is to understand the operational physics of high voltage AlGaN devices and develop engineering solutions that will unlock their performance for power electronics where efficiency and robustness are key. The investigator is also committed to becoming a leading educator in the area of semiconductor devices via the use of team-based, laboratory-based methods and is passionate about ensuring equal access to STEM education/training. Three education/outreach tasks have been defined with the objectives of: (1) equipping undergraduates with marketable skills via hands-on research experiences that they can leverage for STEM careers, (2) engaging underrepresented minority groups to diversify the STEM workforce, and (3) increasing the public’s scientific literacy surrounding semiconductors/electronics.The objective of this CAREER project is to understand the performance limits of ultra-wide bandgap AlGaN-based power devices and establish solutions to deploy these devices in highly efficient and robust systems. The potential for Al-rich AlGaN to support large electric fields will be understood by experimentally extracting the impact ionization coefficients from avalanche photodiodes realized on native AlN substrates. The results will be used to minimize the drift region’s contribution to the overall conduction loss. Since low resistance ohmic contacts to Al-rich AlGaN remain elusive, the surfaces and bulk of UWBG AlGaN will be engineered to obtain thermally stable contacts with reduced contact resistance. The surface barrier height will be reduced using both ex-situ and in-situ interlayers that compensate AlGaN’s polarization charge. Tunneling contacts will also be sought by heavily doping the bulk AlGaN via Si implantation followed by effective activation annealing. The limits of high temperature operation will be explored. Next, p-type doping of AlGaN, in particular for buried and lateral regions, is a barrier towards advanced power devices. Thus, novel Crystal Heterogeneous Integration (CHI) will be investigated to combine p-type compound semiconductors with n-type AlGaN. The high voltage breakdown of heterogeneous PN junctions will be evaluated, as well as their response to light to interpret the resulting band structures and explore carrier transport across the junction. These research tasks will be leveraged to design, fabricate, and characterize high voltage (1-5 kV) AlGaN diodes, with a view to demonstrating the promise of AlGaN technology in future power systems. Their stability in the face of high temperature exposure will also be examined. To address the risk of EMI, the first phototransistor that heterogeneously integrates AlGaN with other compound semiconductors will be investigated for fast optical gating and high voltage blocking.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着世界上越来越多的电力获取,全球对能源的需求可能会大大增加。这种需求将需要满足,而不必加强对气候变化的环境,社会和经济影响的现有关注,这受到电力系统效率的影响。此外,由于这种效率与与电力电子中使用的半导体设备相关的损失息息相关,因此必须研究使用新颖的半导体技术来替换今天的基于硅的组件。宽带的半导体是候选者,但是超宽的带盖(UWBG)半导体代表了下一个边界。特别是,富含铝制的铝制氮化铝(Algan)为探索新一代高效且健壮的电子设备提供了令人兴奋的机会。面对升高的温度或电子干扰(EMI),这些设备的鲁棒性也可以提高系统性能和可靠性。远处,未解决的科学问题和技术障碍的结合使Algan设备无法发挥其全部潜力。然而,最近对氮化铝(ALN)波的商业化允许第一次研究Algan膜的理想特性。这是这个职业项目的研究目标是了解高压Algan设备的运行物理,并开发工程解决方案,这些解决方案将释放其在效率和鲁棒性至关重要的电力电子产品中的性能。研究人员还致力于通过使用基于团队的,基于实验室的方法来成为半导体设备领域的领先教育,并热衷于确保平等获得STEM教育/培训。已经定义了三项教育/宣传任务:(1)通过动手的研究经验使本科生为可销售的技能装备,它们可以利用他们可以为STEM职业提供利用,(2)让代表性不足的少数群体多样化STEM劳动力多样化,以使STEM劳动力多样化,(3)(3)提高公众的围绕该绩效的范围。基于Algan的电源设备并建立解决方案,以将这些设备部署在高效且健壮的系统中。通过实验提取从天然ALN底物上实现的雪崩光电二极管的撞击电离系数,可以理解富含AL的Algan支持大型电场的潜力。结果将用于最大程度地减少漂移区域对整体传导损失的贡献。由于低电阻欧姆与富含Algan的接触仍然难以捉摸,因此将设计表面和大部分UWBG Algan,以获得具有降低的接触电阻的热稳定接触。使用前静脉和原位中层来补偿Algan的极化电荷,将降低表面屏障高度。隧道接触也将通过SI植入后大量掺杂散装Algan,然后进行有效的激活退火而受到伤害。将探索高温操作的限制。接下来,Algan的P型掺杂,尤其是埋葬区域和外侧区域,是对先进的电源设备的障碍。这将研究新型的晶体异质整合(CHI),以将P型复合半导体与N型Algan相结合。将评估异质PN连接的高电压故障,以及它们对光的反应以解释所得的带结构并探索整个交界处的载体运输。这些研究任务将被利用来设计,捏造和特征高压(1-5 kV)Algan语音,以证明在未来的电力系统中的Algan技术的希望。面对高温暴露的稳定性也将被检查。为了应对EMI的风险,将研究将Algan与其他复合半导体整合的第一个光晶体管进行研究,以进行快速的光学门控和高压阻塞。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Demonstration of near-ideal Schottky contacts to Si-doped AlN
演示与硅掺杂 AlN 的近乎理想肖特基接触
- DOI:10.1063/5.0174524
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:Quiñones, C. E.;Khachariya, D.;Bagheri, P.;Reddy, P.;Mita, S.;Kirste, R.;Rathkanthiwar, S.;Tweedie, J.;Pavlidis, S.;Kohn, E.
- 通讯作者:Kohn, E.
Enhancement-Mode AlInN/GaN High-Electron-Mobility Transistors Enabled by Thermally Oxidized Gates
由热氧化栅极实现的增强型 AlInN/GaN 高电子迁移率晶体管
- DOI:10.1109/ted.2023.3343313
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Palmese, Elia;Xue, Haotian;Pavlidis, Spyridon;Wierer, Jonathan J.
- 通讯作者:Wierer, Jonathan J.
Analysis of Vertical GaN JBS and p-n Diodes by Mg Ion Implantation and Ultrahigh-Pressure Annealing
通过镁离子注入和超高压退火分析垂直 GaN JBS 和 p-n 二极管
- DOI:10.1109/ted.2023.3339592
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Stein, Shane R.;Khachariya, Dolar;Mecouch, Will;Mita, Seiji;Reddy, Pramod;Tweedie, James;Sierakowski, Kacper;Kamler, Grzegorz;Bockowski, Michal;Kohn, Erhard
- 通讯作者:Kohn, Erhard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Spyridon Pavlidis其他文献
Spyridon Pavlidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Spyridon Pavlidis', 18)}}的其他基金
Collaborative Research: Improving the Performance and Design of Potentiometric Biosensors for the Detection of Extracellular Histones in Blood with Deep Learning
合作研究:利用深度学习改进用于检测血液中细胞外组蛋白的电位生物传感器的性能和设计
- 批准号:
1936772 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: RF Switches Using 2D Phase Change Materials
EAGER:使用 2D 相变材料的射频开关
- 批准号:
1843395 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF East Asia and Pacific Summer Institute (EAPSI) for FY 2013 in Taiwan
2013 财年 NSF 东亚及太平洋暑期学院 (EAPSI) 在台湾
- 批准号:
1316882 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Fellowship Award
相似国自然基金
导电水凝胶负载iPSC来源细胞及piR-1245工程化外泌体通过改善局部微环境促进心肌梗死重建的机制
- 批准号:82360067
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于现场实测的下击暴流模型关键参数构建及工程适用性研究
- 批准号:52378514
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
代谢工程化MSC胞外囊泡靶向调控巨噬细胞线粒体动力学改善急性肾损伤的作用及机制研究
- 批准号:32371426
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
工程化CRISPR蛋白增强核酸检测灵敏度及耦合微流控技术实现高通量结核分枝杆菌耐药检测的研究
- 批准号:82300128
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于工程化益生菌的肠道脂质Pickering界面转化及肥胖干预研究
- 批准号:82304352
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Neurodegeneration in KIF5A ALS/FTD
KIF5A ALS/FTD 神经退行性变的机制
- 批准号:
10740732 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Towards elucidating PTSD pathogenesis with ultra-portable and low-cost neuroimaging
通过超便携式和低成本的神经影像学阐明 PTSD 发病机制
- 批准号:
10644627 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Investigating a role for eNAMPT-containing extracellular vesicles in mitigating age- and Alzheimer Disease-related cognitive decline
研究含有 eNAMPT 的细胞外囊泡在缓解年龄和阿尔茨海默病相关认知衰退中的作用
- 批准号:
10607376 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Visual Sciences Center of Biomedical Research Excellence
视觉科学生物医学卓越研究中心
- 批准号:
10593131 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别: