Collaborative Research: Foundations of programmable living materials through synthetic biofilm engineering and quantitative computational modeling

合作研究:通过合成生物膜工程和定量计算建模为可编程生物材料奠定基础

基本信息

  • 批准号:
    2214021
  • 负责人:
  • 金额:
    $ 21.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-15 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Non-technical descriptionWhy can a tree self-grow into a complex shape and even heal if you break off a branch, while one’s furniture needs to be crafted and be repaired when damaged? Questions like this guide the future vision of ‘programmable biomaterials’ – moving beyond the traditional ‘nonliving’ materials humans have been utilizing for millennia. Wouldn’t it be exciting to just grow a self-healing table? Recent discoveries in biology and inventions in the field of bioengineering suggest that such a vision could become a reality in the not-too-distant future. Toward this goal, this project will modify microscopically small bacteria so that they can selectively stick together in desired macroscopic patterns and structures – similarly to differently colored Lego Bricks. The materials properties of macroscopic biomaterials grown from such bacteria can then be to tuned, for example, they could be hard like wood or more malleable like clay, and they could even be able to rapidly change between hard and soft. And then there are the truly novel biomaterials aspects: As these cells can still divide and grow and move – this macroscopic material could then change its shape and/or intelligently respond to external forces. Combining experiments and simulations, the researchers will investigate how such biomaterials can be realized and programmed. This project also includes outreach activities that will enable local school children to use bacteria and light in order to grow and pattern such bacterial biomaterials.Technical descriptionThe ability to engineer functional multicellular biomaterial is currently very limited as suitable biomaterial components and self-assembly algorithms are lacking. In nature, many bacterial species organize into biofilms that perform complex cooperative functions, ranging from synthesis and transport of chemicals to directed 3D self-assembly and self-repair. Based on previously synthetic bacterial adhesins developed by the researchers, this project will now integrate a synthetic cell-cell adhesin logic with self-replicating swarming bacteria and establish the foundation for programmable biomaterials. The team combines biophysical modeling and synthetic biology to study these multicellular materials. The project is structured in four aims: (i) Development of bioengineering tools to enable control over deposition and assembly of bacterial cells to generate ‘material blocks’, (ii) patterning of such blocks into sub-tiles with distinct tile-interfaces in between – in order to achieve future spatial separation of different functions, (iii) develop modeling approaches that can predict the starting conditions required for these bacteria to generate a material that is patterned in the desired way, and (iv) take such blocks and have them self-assemble in a rational manner into larger-scale 3D living materials. The researchers will work also with local science teachers and educational professionals to implement and evaluate the use of simpler versions of such biomaterials in schools with a focus on underrepresented minorities. The students will fabricate and pattern simple bacterial materials themselves. Furthermore, they will model the dynamics if these systems with a web applet.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述为什么树自我成长为复杂的形状,甚至可以在分支中脱掉分支,而在损坏时需要制作并修复家具?诸如此类的问题指出了“可编程生物材料”的未来愿景 - 超越了人类在数千年中一直使用的传统“非生命”材料。只要花一个自我修复的桌子会令人兴奋吗?生物工程领域的生物学和事件的最新发现表明,这种愿景在不远的未来可能会成为现实。为了实现这一目标,该项目将修改显微镜上的小广播,以便它们可以选择性地将所需的宏观图案和结构粘在一起 - 类似于不同颜色的乐高积木。例如,可以调节从这种细菌生长的宏观生物材料的材料特性,例如,它们可能像木材一样坚硬或像粘土一样具有延展性,甚至可以在硬和软之间快速变化。然后是真正新颖的生物材料方面:由于这些细胞仍然可以分裂,生长和移动 - 然后,这种宏观材料可以改变其形状和/或智能对外部力的反应。结合了实验和模拟,研究人员将研究如何实现和编程此类生物材料。该项目还包括宣传活动,这些活动将使当地的儿童能够使用细菌和光线以种植和对这种细菌生物材料进行研究。技术描述目前缺乏适合的生物材料成分和自组装算法的功能性多细胞生物材料的能力。在自然界中,许多细菌物种都组织成具有复杂合作功能的生物膜,从化学物质的合成和运输到指向3D自组装和自我修复。基于研究人员开发的先前合成细菌粘附素,该项目现在将将合成细胞 - 细胞粘合剂逻辑与自我复制的蜂群结合在一起,并为可编程生物材料建立基础。该团队结合了生物物理建模和合成生物学,以研究这些多细胞材料。该项目以四个目的结构结构:(i)开发生物工程工具,以控制细菌细胞的沉积和组装以产生“材料块”,(ii)将这些块构成具有不同瓷砖交织的子瓷砖之间的图案,以便为了预测这些材料的未来材料,(iii ii ii ii ii a的材料)都需要在两者之间进行独特的瓷砖互化,(iii ii II),(iii II)方式,(iv)采取这样的块,使它们以合理的方式自我组装成大规模的3D活材料。研究人员还将与当地的科学教师和教育专业人员合作,在学校中实施和评估此类生物材料的简单版本的使用,重点是代表不足的少数群体。学生将本身制造并制作简单的细菌材料。此外,如果这些具有Web小程序的系统,它们将对动态进行建模。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被视为通过评估来获得珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joern Dunkel其他文献

Joern Dunkel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joern Dunkel', 18)}}的其他基金

Collaborative Research: Optimal-Complexity Spectral Methods for Complex Fluids
合作研究:复杂流体的最优复杂谱方法
  • 批准号:
    1952706
  • 财政年份:
    2020
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
UNS:Collaborative Research: Transport and Chemotaxis of Swimming Cells in Porous Media Flows
UNS:合作研究:多孔介质流中游动细胞的运输和趋化性
  • 批准号:
    1510768
  • 财政年份:
    2015
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant

相似国自然基金

开放式空间刚-柔智能群体机器人基础理论与关键技术研究
  • 批准号:
    91848205
  • 批准年份:
    2018
  • 资助金额:
    280.0 万元
  • 项目类别:
    重大研究计划
面向大范围科考的人-跨域机器人智能协同基础理论和试验研究
  • 批准号:
    91748130
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    重大研究计划
人机协作型移动双臂机器人的基础研究
  • 批准号:
    91648201
  • 批准年份:
    2016
  • 资助金额:
    300.0 万元
  • 项目类别:
    重大研究计划
人机协作型新一代工业机器人基础研究
  • 批准号:
    U1508208
  • 批准年份:
    2015
  • 资助金额:
    246.0 万元
  • 项目类别:
    联合基金项目
实用非相干能量收集中继系统基础理论与算法研究
  • 批准号:
    61501304
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
  • 批准号:
    2405548
  • 财政年份:
    2024
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了