RI: Small: Large-Scale Game-Theoretic Reasoning with Incomplete Information
RI:小型:不完整信息的大规模博弈论推理
基本信息
- 批准号:2214141
- 负责人:
- 金额:$ 39.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Game-theoretic analysis has been a crucial tool across a broad array of disciplines, including economics, political science, operations research, and computer science. With the increased impact of algorithmic decision-making throughout the economy and the associated improvement in computing infrastructure, the nature of strategic interactions that we wish to understand and control has become increasingly complex. As a result, purely mathematical methods for game-theoretic analysis need increasingly to be complemented by effective computational tools to study them in depth. However, despite dramatic progress in computational game theory over the last several decades, there remain important broad classes of strategic interactions for which no scalable solution approaches exist, particularly, reasoning in the presence of incomplete information, which involve participants that are uncertain about the preferences of others. For example, combinatorial auctions, commonly used in online settings, and strategic interactions in security among many defenders and attackers, have no effective general-purpose analysis techniques. Our goal is to significantly advance the state of the art in analyzing such multiparty interactions by taking advantage of the deep learning revolution—in particular, the myriad of highly effective tools for function representation and gradient-based optimization that can be used to grapple with large, complex problems like these.Specifically, while there has been some progress in gradient-based methods, they have been restricted in practice to situations with complete information that are either one-shot, two-player Stackelberg games, like decision-making in markets dominated by a single large firm, or zero-sum games (including those with imperfect information). Our research will leverage more heavily the representational power of modern deep neural network architectures to develop equilibrium approximation algorithms that significantly extend the class that can be analyzed at scale, with many of the proposed advances specifically aimed at automatically discovering and leveraging symmetry and sparsity in the presence of incomplete information. Additionally, this project will contribute to developing undergraduate and graduate curricula on game-theoretic modeling and analysis, and will support graduate and undergraduate interdisciplinary research in economics and computation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
游戏理论分析一直是各种各样的学科的关键工具,包括经济学,政治科学,运营研究和计算机科学。随着整个经济中算法决策的影响不断增加,以及计算基础设施的相关改进,我们希望理解和控制的战略互动的性质变得越来越复杂。结果,纯粹需要通过有效的计算工具来完成游戏理论分析的纯数学方法,以深入研究它们。然而,尽管在过去几十年中,计算游戏理论的进展巨大,但仍有重要的战略互动类别,这些互动尚无可扩展的解决方案方法,尤其是在存在不完整的信息的情况下推理,这涉及参与者对他人偏好不确定的参与者。例如,在在线环境中常用的组合拍卖以及许多防御者和攻击者在安全性中的策略互动,没有有效的通用分析技术。 Our goal is to significantly advance the state of the art in analyzing such multiple interactions by taking advantage of the deep learning revolution—in particular, the myriad of highly effective tools for function representation and gradient-based optimization that can be used to grapple with large, complex problems like these.Specifically, while there has been some progress in gradient-based methods, they have been restricted in practice to situations with complete information that are either one-shot, two-player Stackelberg games, like市场中的决策以一家大型公司或零和零游戏为主导(包括具有不完美信息的游戏)。我们的研究将更加严格地利用现代深度神经元网络体系结构的代表力,以开发同等的近似算法,这些算法显着扩展了可以大规模分析的类别,并且在存在不足信息的情况下,旨在自动发现和利用对称性和稀疏性的许多拟议进步。此外,该项目将有助于开发有关游戏理论建模和分析的本科生和毕业课程,并将支持经济学和计算领域的研究生和本科跨学科研究。该奖项反映了NSF的法定任务,并通过评估该基金会的知识级别的智力和广泛的影响来审查CRITERIA。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Partially Supervised Reinforcement Learning Framework for Visual Active Search
- DOI:10.48550/arxiv.2310.09689
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Anindya Sarkar;Nathan Jacobs;Yevgeniy Vorobeychik
- 通讯作者:Anindya Sarkar;Nathan Jacobs;Yevgeniy Vorobeychik
Neural Lyapunov Control for Discrete-Time Systems
- DOI:10.48550/arxiv.2305.06547
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Junlin Wu;Andrew Clark;Y. Kantaros;Yevgeniy Vorobeychik
- 通讯作者:Junlin Wu;Andrew Clark;Y. Kantaros;Yevgeniy Vorobeychik
Exact Verification of ReLU Neural Control Barrier Functions
- DOI:10.48550/arxiv.2310.09360
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Hongchao Zhang;Junlin Wu;Yevgeniy Vorobeychik;Andrew Clark
- 通讯作者:Hongchao Zhang;Junlin Wu;Yevgeniy Vorobeychik;Andrew Clark
Computing an Optimal Pitching Strategy in a Baseball At-Bat
- DOI:10.32473/flairs.36.133346
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Connor Douglas;Everett Witt;Mia Bendy;Yevgeniy Vorobeychik
- 通讯作者:Connor Douglas;Everett Witt;Mia Bendy;Yevgeniy Vorobeychik
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yevgeniy Vorobeychik其他文献
Stochastic search methods for nash equilibrium approximation in simulation-based games
基于模拟的博弈中纳什均衡近似的随机搜索方法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Yevgeniy Vorobeychik;Michael P. Wellman - 通讯作者:
Michael P. Wellman
Non-Cooperative Team Formation and a Team Formation Mechanism
非合作组队与组队机制
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Chambers;Chen Hajaj;Greg Leo;Jian Lou;Martin Van der Linden;Yevgeniy Vorobeychik;M. Wooders - 通讯作者:
M. Wooders
Computing Randomized Security Strategies in Networked Domains
计算网络域中的随机安全策略
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Joshua Letchford;Yevgeniy Vorobeychik - 通讯作者:
Yevgeniy Vorobeychik
Dataset Representativeness and Downstream Task Fairness
数据集代表性和下游任务公平性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Victor A. Borza;Andrew Estornell;Chien;Bradley A. Malin;Yevgeniy Vorobeychik - 通讯作者:
Yevgeniy Vorobeychik
Feature Conservation in Adversarial Classifier Evasion: A Case Study
对抗性分类器规避中的特征守恒:案例研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Liang Tong;Bo Li;Chen Hajaj;Yevgeniy Vorobeychik - 通讯作者:
Yevgeniy Vorobeychik
Yevgeniy Vorobeychik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yevgeniy Vorobeychik', 18)}}的其他基金
Travel: Doctoral Consortium at the 23rd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 23 届自主代理和多代理系统国际会议
- 批准号:
2341227 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
FAI: FairGame: An Audit-Driven Game Theoretic Framework for Development and Certification of Fair AI
FAI:FairGame:用于公平人工智能开发和认证的审计驱动的博弈论框架
- 批准号:
1939677 - 财政年份:2020
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
RI: Small: Protecting Social Choice Mechanisms from Malicious Influence
RI:小:保护社会选择机制免受恶意影响
- 批准号:
1903207 - 财政年份:2019
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
CAREER: Adversarial Artificial Intelligence for Social Good
职业:对抗性人工智能造福社会
- 批准号:
1905558 - 财政年份:2018
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
CAREER: Adversarial Artificial Intelligence for Social Good
职业:对抗性人工智能造福社会
- 批准号:
1649972 - 财政年份:2017
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Doctoral Mentoring Consortium at the Sixteenth International Conference on Autonomous Agents and Multi-Agent Systems
博士生导师联盟出席第十六届自主代理和多代理系统国际会议
- 批准号:
1727266 - 财政年份:2017
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Integrated Safety Incident Forecasting and Analysis
综合安全事件预测与分析
- 批准号:
1640624 - 财政年份:2016
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
RI: Small: Theory and Application of Mechanism Design for Team Formation
RI:小:团队形成机制设计理论与应用
- 批准号:
1526860 - 财政年份:2015
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大压电有机小分子晶体的设计合成和性能研究
- 批准号:22375082
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型小分子化合物WK692靶向BCL6-BTB结构域抑制弥漫大B细胞淋巴瘤的功能与机理研究
- 批准号:82202897
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
两相湍流中离散相小尺度过程大涡模拟的亚格子模型构建
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
“以大代小”风电场多尺度混合湍流结构的演化与影响
- 批准号:92252103
- 批准年份:2022
- 资助金额:100.00 万元
- 项目类别:重大研究计划
相似海外基金
RI:Small: Improve Visual Tracking by Large Scale Learning, Diagnosis, and Evaluation
RI:Small:通过大规模学习、诊断和评估改进视觉跟踪
- 批准号:
2006665 - 财政年份:2020
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
CISE: RI: Small: Amortized Inference for Large-Scale Graphical Models
CISE:RI:小型:大规模图形模型的摊销推理
- 批准号:
1908617 - 财政年份:2019
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
RI: SMALL: Fast Prediction and Model Compression for Large-Scale Machine Learning
RI:SMALL:大规模机器学习的快速预测和模型压缩
- 批准号:
1901527 - 财政年份:2018
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
RI: SMALL: Fast Prediction and Model Compression for Large-Scale Machine Learning
RI:SMALL:大规模机器学习的快速预测和模型压缩
- 批准号:
1719097 - 财政年份:2017
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
RI: Small: Parallel Methods for Large-Scale Probabilistic Inference
RI:小型:大规模概率推理的并行方法
- 批准号:
1829403 - 财政年份:2017
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant