Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
基本信息
- 批准号:2219956
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In algorithmic threat detection, understanding the interactions of multivariate time series is crucial. Graph neural networks (GNNs) with attention mechanisms have proven effective in learning and predicting such time series. This project aims to investigate GNNs for improved acceleration and accuracy. The research will have broad applicability in fields such as Artificial Intelligence (AI), traffic analysis, power systems, and health analytics. The project will provide training opportunities and promote STEM education for underrepresented students.The project aims to address three key challenges in threat detection within multivariate time series: 1) maintaining accuracy with deep GNNs, 2) training GNNs with limited data, and 3) reducing computational costs in training and deploying deep GNNs with attention layers. The research advances continuous-depth GNNs and efficient attention algorithms based on the partial differential equation (PDE) theory. By leveraging the continuous viewpoint of GNNs, the project aims to develop theoretically-grounded and computationally efficient algorithms for accurate graph deep learning with limited supervision. The project will focus on three research thrusts: Thrust A: Bridging diffusion equation theory and GNN architecture design to develop a new class of GNNs based on diffusion equations on graphs. These GNNs overcome over-smoothing and reliably learn and predict with limited supervision. Thrust B: Developing fast algorithms for GNN and attention training, testing, and inference. Thrust C: Application of the new algorithms to anomaly detection and software development, specifically in benchmark graph learning tasks and anomaly detection in traffic flow, power distribution, and epidemic data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在算法威胁检测中,了解多变量时间序列的相互作用至关重要。具有注意力机制的图神经网络(GNN)已被证明在学习和预测此类时间序列方面是有效的。该项目旨在研究GNN以提高加速和准确性。该研究将在人工智能(AI),交通分析,电力系统和健康分析等领域具有广泛的适用性。该项目旨在解决多变量时间序列中威胁检测的三个关键挑战:1)保持深度GNN的准确性,2)用有限的数据训练GNN,3)降低训练和部署具有注意力层的深度GNN的计算成本。研究提出了基于偏微分方程(PDE)理论的连续深度GNNs和有效的注意力算法。通过利用GNN的连续观点,该项目旨在开发理论基础和计算效率高的算法,用于在有限监督下进行精确的图深度学习。该项目将侧重于三个研究方向:方向A:桥接扩散方程理论和GNN架构设计,以开发一类基于图上扩散方程的新GNN。这些GNN克服了过度平滑,并在有限的监督下可靠地学习和预测。目标B:为GNN和注意力训练、测试和推理开发快速算法。推力C:新算法在异常检测和软件开发中的应用,特别是在基准图学习任务和交通流量、配电和流行病数据的异常检测中。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bao Wang其他文献
Study on the startup characteristics of the methanogenic UASB reactor under acid condition at pH5.5
pH5.5酸性条件下产甲烷UASB反应器启动特性研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bao Wang;Jie Ding;Hongjian Liu;Chunmiao Liu;Wangbin Cheng;Luyan Zhang;Xianshu Liu;Nanqi Ren - 通讯作者:
Nanqi Ren
Effect of Municipal Solid Waste Incineration Fly Ash Leachate on the Hydraulic Performance of a Geosynthetic Clay Liner
城市生活垃圾焚烧飞灰渗滤液对土工合成粘土衬垫水力性能的影响
- DOI:
10.1007/s40996-021-00674-z - 发表时间:
2021-06 - 期刊:
- 影响因子:0
- 作者:
Bao Wang;Xingling Dong;Tongtong Dou;Bizhou Ge - 通讯作者:
Bizhou Ge
Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance
轻松制造空心 CuO 纳米立方体以增强锂/钠存储性能
- DOI:
10.1039/d1ce00704a - 发表时间:
2021 - 期刊:
- 影响因子:3.1
- 作者:
Jie Zhao;Yuyan Zhao;Wen-Ce Yue;Shu-Min Zheng;Xue Li;Ning Gao;Ting Zhu;Yu-Jiao Zhang;Guang-Ming Xia;Bao Wang - 通讯作者:
Bao Wang
Heterogeneous Nucleation in Semicrystalline Polymers
- DOI:
10.15167/wang-bao_phd2020-03-20 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Bao Wang - 通讯作者:
Bao Wang
The influence of wind turbine blade rotation on anemometer
风力机叶片旋转对风速计的影响
- DOI:
10.1088/1742-6596/2280/1/012008 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yaqiang Zhou;Lizhu Tian;Zhiwen Jiang;Yapeng Li;Zhaohe Wu;Chenglong Qi;Y. Gou;Yonghe Xu;Dayu Du;Bao Wang;Yuan Wu;W. Feng;Peng Li - 通讯作者:
Peng Li
Bao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bao Wang', 18)}}的其他基金
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
- 批准号:
2152762 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
- 批准号:
2208361 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Student Support: 18th IEEE International Conference on eScience
学生支持:第 18 届 IEEE 国际电子科学会议
- 批准号:
2219510 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
2110145 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
1924935 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
- 批准号:
2317397 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant














{{item.name}}会员




