Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
基本信息
- 批准号:2220495
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Given current technological, societal and environmental changes, we face ever more diverse potentially destructive threats. Technology has enabled the collection of massive spatiotemporal datasets, which can be used for real-time identification of potential threats. The complexities of such data create exciting challenges for online threat detection, involving the learning and integration of complex nonlinear embeddings for efficient monitoring, the fusion of multiple spatiotemporal data sources for improving detection performance, and scalability for real-time implementation on distributed computing systems. This project will develop a novel Distributed, MultI-source, Topology-aware (a-DMIT) online threat detection framework that tackles these challenges for massive, high-dimensional spatiotemporal data. In developing reliable, scalable and versatile threat detection methods (supported by theory and algorithms), a-DMIT has the potential to improve national health and defense in a broad range of areas, including environmental monitoring, crime monitoring and mobile health. The a-DMIT project will contribute to education by involving undergraduate and graduate students in the research, and developed software will be made publicly available. a-DMIT will develop three new detection methods that jointly tackle fundamental challenges in online monitoring of massive data streams. The first method, called PERsistence diagram-based ChangE-PoinT detection (PERCEPT), is a novel non-parametric, topology-aware algorithm that extends state-of-the-art tools in topological data analysis for efficient monitoring of high-dimensional data streams. The second, called MUlti-source Monitoring via Gaussian Processes (MUM-GP), is an efficient online Bayesian non-parametric detection method for multi-source spatiotemporal data. The third, called Conditional Auto-Regressive Distributed (CARD) detection, is an online spatiotemporal network monitoring procedure that leverages neighboring spatial information in a distributed and decentralized fashion. a-DMIT will be usable for a wide range of modern threat detection applications, including environmental monitoring, crime monitoring, satellite image monitoring and power grid security.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鉴于当前的技术,社会和环境变化,我们面临着更加多样化的潜在破坏性威胁。技术使大量时空数据集的收集可以用于实时识别潜在威胁。此类数据的复杂性为在线威胁检测带来了令人兴奋的挑战,涉及复杂的非线性嵌入以进行有效监视的学习和集成,融合了多个时空数据源以改善检测性能以及在分布式计算系统上实时实现的可扩展性。该项目将开发出一种新颖的分布式,多源,拓扑感知(A-DMIT)在线威胁检测框架,该框架解决了这些挑战,以实现大规模的高维时空数据。在开发可靠,可扩展和多功能的威胁检测方法(由理论和算法支持)时,A-DMIT有可能在广泛的领域中改善国家健康和国防,包括环境监测,犯罪监测和移动健康。 A-DMIT项目将通过涉及本科生和研究生参与研究来为教育做出贡献,并且将公开提供开发的软件。 A-DMIT将开发三种新的检测方法,这些方法在在线监视大规模数据流中共同应对基本挑战。第一种方法,称为基于持久图的更改点检测(感知),是一种新型的非参数,拓扑感知算法,在拓扑数据分析中扩展了最新工具,以有效地监视高维数据流。第二个通过高斯工艺(MUM-GP)称为多源监测,是用于多源时空数据的有效在线贝叶斯非参数检测方法。第三个称为条件自动回归分布式(卡)检测是在线时空网络监控程序,以分布式和分散的方式利用相邻的空间信息。 A-DMIT可用于广泛的现代威胁检测应用程序,包括环境监测,犯罪监测,卫星图像监控和电网安全性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao Xie其他文献
Co-transport of negatively charged nanoparticles in saturated porous media: Impacts of hydrophobicity and surface O-functional groups.
带负电纳米颗粒在饱和多孔介质中的共传输:疏水性和表面 O 官能团的影响。
- DOI:
10.1016/j.jhazmat.2020.124477 - 发表时间:
2020-11 - 期刊:
- 影响因子:13.6
- 作者:
Tianjiao Xia;Yixuan Lin;Shunli Li;Ni Yan;Yao Xie;Mengru He;Xuetao Guo;Lingyan Zhu - 通讯作者:
Lingyan Zhu
Conformal prediction set for time-series
时间序列的共形预测集
- DOI:
10.48550/arxiv.2206.07851 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chen Xu;Yao Xie - 通讯作者:
Yao Xie
Conformal prediction for multi-dimensional time series by ellipsoidal sets
椭球集多维时间序列的共形预测
- DOI:
10.48550/arxiv.2403.03850 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chen Xu;Hanyang Jiang;Yao Xie - 通讯作者:
Yao Xie
Poisson matrix completion
泊松矩阵完成
- DOI:
10.1109/isit.2015.7282774 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yang Cao;Yao Xie - 通讯作者:
Yao Xie
Deep Learning Fluorescence Imaging of Visible to NIR‐II Based on Modulated Multimode Emissions Lanthanide Nanocrystals
基于调制多模发射镧系元素纳米晶体的可见光到 NIR™II 的深度学习荧光成像
- DOI:
10.1002/adfm.202206802 - 发表时间:
2022-08 - 期刊:
- 影响因子:19
- 作者:
Yapai Song;Mengyang Lu;Yao Xie;Guotao Sun;Jiabo Chen;Hongxin Zhang;Xin Liu;Fan Zhang;Lining Sun - 通讯作者:
Lining Sun
Yao Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yao Xie', 18)}}的其他基金
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
- 批准号:
2134037 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
- 批准号:
2220387 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Sequential Detection and Prediction for Solar Situation Awareness in Power Networks
电力网络中太阳态势感知的顺序检测和预测
- 批准号:
1938106 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
ATD: Scanning Dynamic Spatial-Temporal Discrete Events for Threat Detection
ATD:扫描动态时空离散事件以进行威胁检测
- 批准号:
1830210 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Quick Detection for Streaming Data Over Dynamic Networks
职业:快速检测动态网络上的流数据
- 批准号:
1650913 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
CyberSEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
- 批准号:
1442635 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 10th ACM International Conference on Underwater Networks and System (WUWNet'15)
NSF 学生旅费资助第十届 ACM 国际水下网络和系统会议 (WUWNet15)
- 批准号:
1551297 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant