CAREER:Shape Memory Polymers as Biomaterial

职业:形状记忆聚合物作为生物材料

基本信息

  • 批准号:
    2237510
  • 负责人:
  • 金额:
    $ 55.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Non-technical Description:You may have heard about heat shrink tubing. These shrinkable plastic tubes are typically used to insulate unprotected wires to protect them against abrasion and other environmental impacts, such as dust and moisture. These tubes are made of so-called shape memory polymers and can change their shape after applying a specific stimulus, such as temperature. What if these materials could be used to seal body parts and organs (such as the intestines or vasculature) after surgery or injury? Unfortunately, the conditions for the shrinking of conventional heat shrink tubing are not suitable for biomedical applications, as those conditions far exceed body temperature and would damage human tissues and injure the patient. However, a heat shrink tube that responds to bodily conditions would enable various medical applications and advance health care. This is why this NSF grant aims to translate heat shrink tubing to the biomedical field to seal biological tissues. To realize the biomedical version of this technology, a shape memory polymer that (1) is biocompatible, (2) shrinks within minutes under physiological conditions without the need for excessive application of heat, and (3) is biodegradable will be developed and investigated. This project also includes educational activities designed to raise excitement, awareness, and interest in the emerging field of smart polymeric biomaterials. This excitement will be achieved by encouraging underrepresented minorities and women to pursue careers in biomedical engineering through a gender- and ethnicity-matched mentor-mentee program. To excite non-scientists about polymer research, a 'science slam' event at local venues will be implemented. Students and faculty members from UNT will present their research in lay terms and in a funny way at these events.Technical Description: This CAREER project aims to elucidate the underlying mechanism of the plasticization-induced shape memory effect of thiol-ene based polymers. The model application for this material will be a heat shrink tubing that can shrink at bodily conditions (37° C and simulated body fluids) and can be used to seal colonic anastomosis. The specific three aims are to (1) Systematically investigate the effect of crosslink-density and chain extender length on the plasticization-induced shape memory effect of thiol-ene based polymers. Mechanical and thermomechanical measurements inside simulated body fluids will be used to assess shape memory properties and structure-property relationships. (2) Understand the relationship between material thickness, degree of shape-programming, and radial recovery forces of tube-shaped SMPs to determine optimal design parameters for sufficient shape recovery using the heat shrink tube model. (3) Demonstrate the functionality of a biomedical heat shrink tube that utilizes the plasticization-induced shape recovery through an ex vivo colon anastomosis model and quantify mechanical and sealing properties. The proposed research will advance science by filling the gap in the structure-property relationship of thiol-ene based SMPs that utilize plasticization for their shape recovery, which is essential for designing future devices. In addition, this innovative biomaterial will allow the broader research community to develop novel biomedical devices tailored to specific tissues and applications. Educational and outreach activities will be implemented to raise excitement, awareness, and interest in the emerging field of smart polymeric biomaterials. These will include a gender- and ethnicity-matched mentor-mentee program, training students from underrepresented groups in the PI's laboratory, incorporating research discoveries into coursework, and communicating research to the general public at local science slam events.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:您可能已经听说过热收缩管。这些可收缩的塑料管通常用于隔离未保护的电线,以防止其磨损和其他环境影响,例如灰尘和水分。这些试管由所谓的形状记忆聚合物制成,并在施加特定刺激(例如温度)后可以改变其形状。如果这些材料可以在手术或受伤后使用这些材料来密封身体部位和器官(例如肠或脉管系统)怎么办?不幸的是,由于这些条件远远超过体温,并且会损害人体组织并伤害患者,因此传统热收缩管收缩的条件不适合生物医学应用。但是,对身体状况有反应的热收缩管将促进各种医疗应用并提高医疗保健。这就是为什么该NSF授予旨在将热收缩管转换为生物医学领域以密封生物组织的原因。为了意识到这项技术的生物医学版本,(1)是生物相容性的形状记忆聚合物,(2)在物理条件下在几分钟内收缩,而无需过量施加热量,并且(3)将开发和研究(3)。该项目还包括旨在提高智能聚合物生物材料新兴领域的兴奋,意识和兴趣的教育活动。通过鼓励代表性不足的少数群体和妇女通过性别和种族匹配的心理损害计划从事生物医学工程的职业来实现这一兴奋。为了激发有关聚合物研究的非科学家,将在当地场地实施“科学大满贯”活动。来自UNT的学生和教职员工将以这些事件的方式和有趣的方式介绍他们的研究。技术描述:该职业项目旨在阐明基于硫醇 - 基于硫醇的聚合物的增塑引起的形状记忆效应的基本机制。该材料的模型应用将是一种热收缩管,可以在身体条件下(37°C和模拟体液)收缩,可用于密封结肠吻合。具体的三个目的是(1)系统地研究交联密度和链扩展器长度对硫醇基烯基聚合物的形状记忆效应的影响。模拟体液内的机械和热机械测量将用于评估形状的记忆特性和结构质体关系。 (2)了解材料厚度,形状编程程度和管状SMP的径向回收力之间的关系,以确定使用热收缩管模型的最佳设计参数,以进行足够的形状恢复。 (3)证明了生物医学热收缩管的功能,该管子利用了通过离体结肠吻合模型模型并量化机械和密封特性的增塑诱导的形状恢复。拟议的研究将通过填补基于硫醇 - 烯的SMP的结构 - 培训关系的空白来提高科学,从而利用增塑的形状恢复,这对于设计未来的设备至关重要。此外,这种创新的生物材料将使更广泛的研究界能够开发出针对特定组织和应用量身定制的新型生物医学设备。将实施教育和外展活动,以提高对智能聚合物生物材料新兴领域的兴奋,意识和兴趣。这些将包括一项性别和种族匹配的心理群众计划,培训PI实验室中代表性不足的小组的学生,将研究发现纳入课程工作,并将研究与当地科学SLAM事件的公众进行交流。该奖项反映了NSF的立法使命,并通过使用基金会的智力效果和广泛的评估来评估,并通过评估诚实地进行了评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melanie Ecker其他文献

Melanie Ecker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

仿生形状记忆型自驱动接触熔化动态传热行为与强化机理研究
  • 批准号:
    52306077
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于激光加工的形状记忆聚合物仿壁虎脚结构制备及其粘附性能调控研究
  • 批准号:
    52305319
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于混合变量机器学习模型设计高弹热效应高循环稳定性形状记忆合金
  • 批准号:
    52303297
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
压电/形状记忆协同增效阻尼复合材料的制备与能量耗散机制研究
  • 批准号:
    52373083
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维石墨烯增强形状记忆聚氨酯的智能磨损抑制机理研究
  • 批准号:
    52305225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Experience-dependent tuning of socially selective neural circuits
社会选择性神经回路的经验依赖调节
  • 批准号:
    10723708
  • 财政年份:
    2023
  • 资助金额:
    $ 55.3万
  • 项目类别:
2023 Excitatory Synapses and Brain Function Gordon Research Conference and Seminar
2023兴奋性突触与大脑功能戈登研究会议暨研讨会
  • 批准号:
    10673318
  • 财政年份:
    2023
  • 资助金额:
    $ 55.3万
  • 项目类别:
CAREER: Multiphysics Mechanics of Magnetic Shape Memory Polymers
职业:磁性形状记忆聚合物的多物理力学
  • 批准号:
    2145601
  • 财政年份:
    2021
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Standard Grant
CAREER: Superelastic Organic Semiconductors (SOSs): A New Class of Molecular Crystals of Responsive Shape Memory
职业:超弹性有机半导体(SOS):一类新型响应形状记忆分子晶体
  • 批准号:
    1941323
  • 财政年份:
    2020
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Standard Grant
CAREER: Design and Processing of Multifunctional Shape Memory Alloy Microfiber Yarns and Textiles with Tailorable Mechanical Performance
职业:具有可定制机械性能的多功能形状记忆合金超细纤维纱线和纺织品的设计和加工
  • 批准号:
    1943715
  • 财政年份:
    2020
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了