CAREER: Interaction-oriented 3D Representation Learning on Point Cloud

职业:点云上面向交互的 3D 表示学习

基本信息

  • 批准号:
    2240160
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

The central objective in the field of three dimensional (3D) vision is to leverage perception to plan and execute actions effectively. Consider the process of creating action plans based on visual observations. One might wish to understand the possible alterations to an object after it undergoes a specific action. Interestingly, humans often acquire this knowledge through experiential learning, implying a strong interplay between perception, cognition, and interaction. Inspired by this intertwined relationship, this project endeavors to examine deep learning methodologies for 3D vision within the context of this perception-cognition-interaction cycle. The project will capitalize on the recent advancements in Computer Vision, Machine Learning, and Computer Graphics across three pivotal areas: 3D point cloud data learning, closed-loop policy learning frameworks, and realistic simulation environments. The principal methodology will entail a careful analysis of the relationship between 3D understanding and interaction, and design innovative learning frameworks. These will incorporate representation learning from 3D point clouds for the prediction of actions and by the consequences of actions. The project will enhance the understanding of the three-dimensional world within physically embodied artificial intelligence systems (embodied AI). The ultimate goal is to construct AI systems that can optimally learn from interactive experiences. This research is beneficial for many applications such as smart manufacturing, exploratory robotics, autonomous driving, and augmented reality devices for life and work assistance.This project breaks down the understanding of 3D point cloud data into three distinct categories: comprehension of object structure, grasp of kinematics and dynamics, and perception of interaction. For each dimension, the team will develop novel frameworks that encapsulate the perception-cognition-interaction cycle. Moreover, the research will probe into learning algorithms and 3D neural network architectures that can seamlessly integrate into the cycle. Given the perspective of this research, the project is also expected to unearth a series of challenges not yet extensively researched in 3D vision literature. The team will strive to uncover innovative, principle-based solutions to these challenges. As the project treads new ground and existing datasets are insufficient, the team will also venture into interaction data collection in both virtual and real-world settings. The research philosophy builds on the investigator's prior work in 3D deep learning, generalizable policy learning, and robot simulator design. This foundational work paves the way for 3D representations that can inform the design and learning of interaction policies adaptable across diverse environments and tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
三维(3D)愿景领域的核心目标是利用感知来有效地计划和执行行动。考虑基于视觉观察创建行动计划的过程。人们可能希望了解对象进行特定动作后可能的更改。有趣的是,人类经常通过体验式学习获得这些知识,这意味着感知,认知和互动之间存在很强的相互作用。受这种相互交织的关系的启发,该项目努力在这个感知认知相互作用周期的背景下检查深度学习方法的3D视觉。该项目将利用三个关键领域的计算机视觉,机器学习和计算机图形方面的最新进步:3D点云数据学习,闭环策略学习框架和现实的仿真环境。主要方法将需要仔细分析3D理解与互动之间的关系,并设计创新的学习框架。这些将从3D点云中纳入代表性学习,以预测动作和行动的后果。该项目将增强对身体体现的人工智能系统(体现AI)中三维世界的理解。最终目标是构建可以从交互式体验中最佳学习的AI系统。这项研究对许多应用,例如智能制造,探索性机器人技术,自动驾驶以及增强的生活和工作帮助现实设备。该项目将3D点云数据的理解分为三个不同的类别:对对象结构,运动和动态的理解,以及相互作用的感知。对于每个维度,团队将开发封装感知认知相互作用周期的新颖框架。此外,该研究将探究学习算法和3D神经网络体系结构,这些算法可以无缝整合到周期中。从这项研究的角度来看,该项目还有望发掘一系列尚未在3D Vision文献中进行的挑战。该团队将努力揭示针对这些挑战的创新,基于原则的解决方案。由于该项目踩新的地面和现有数据集不足,因此团队还将冒险进入虚拟和现实世界中的交互数据收集。研究理念是基于研究者在3D深度学习,可推广的政策学习和机器人模拟器设计中的先前工作。这项基本工作为3D表示形式铺平了道路,可以在各种环境和任务中适应互动策略的设计和学习。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子的评估来提供支持的,并具有更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Su其他文献

Nanosensor Based on Fano resonance in a metal-insulator-metal waveguide structure coupled with a half-ring
基于金属-绝缘体-金属波导结构中法诺共振与半环耦合的纳米传感器
  • DOI:
    10.1016/j.rinp.2021.103842
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Haoran Shi;Shubin Yan;Xiaoyu Yang;Hao Su;Xiushan Wu;Ertian Hua
  • 通讯作者:
    Ertian Hua
Real-Time Robust 3D Plane Extraction for Wearable Robot Perception and Control
用于可穿戴机器人感知和控制的实时鲁棒 3D 平面提取
  • DOI:
    10.1115/dmd2018-6964
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ran Duan;Shuangyue Yu;Guang H. Yue;R. Foulds;Chen Feng;Yingli Tian;Hao Su
  • 通讯作者:
    Hao Su
Regional characteristics and discrimination of the fermentation starter Hong Qu in traditional rice wine brewing
传统黄酒酿造中发酵剂红曲的地域特征及判别
Optimization of customer-side battery storage for multiple service provision: arbitrage, peak shaving, and regulation
优化客户端电池存储以提供多种服务:套利、调峰和调节
  • DOI:
    10.1109/tia.2022.3145330
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Hao Su;Donghan Feng;Yi Zhao;Yun Zhou;Quan Zhou;Chen Fang;Usama Rahman
  • 通讯作者:
    Usama Rahman
Constrained Online Two-stage Stochastic Optimization: Algorithm with (and without) Predictions
约束在线两阶段随机优化:带(和不带)预测的算法
  • DOI:
    10.48550/arxiv.2401.01077
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Piao Hu;Jiashuo Jiang;Guodong Lyu;Hao Su
  • 通讯作者:
    Hao Su

Hao Su的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Su', 18)}}的其他基金

W-HTF-RL: Collaborative Research: Improving the Future of Retail and Warehouse Workers with Upper Limb Disabilities via Perceptive and Adaptive Soft Wearable Robots
W-HTF-RL:协作研究:通过感知和自适应软可穿戴机器人改善上肢残疾的零售和仓库工人的未来
  • 批准号:
    2231419
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Versatile Wearable Robots for Rehabilitation of Children with Gait Disabilities
职业:用于步态障碍儿童康复的多功能可穿戴机器人
  • 批准号:
    2227091
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
W-HTF-RL: Collaborative Research: Improving the Future of Retail and Warehouse Workers with Upper Limb Disabilities via Perceptive and Adaptive Soft Wearable Robots
W-HTF-RL:协作研究:通过感知和自适应软可穿戴机器人改善上肢残疾的零售和仓库工人的未来
  • 批准号:
    2026622
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Versatile Wearable Robots for Rehabilitation of Children with Gait Disabilities
职业:用于步态障碍儿童康复的多功能可穿戴机器人
  • 批准号:
    1944655
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NRI: FND: Soft Wearable Robots for Injury Prevention and Performance Augmentation
NRI:FND:用于预防伤害和增强性能的软可穿戴机器人
  • 批准号:
    1830613
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
RI:Medium:Collaborative Research: Object-Centric Inference of Actionable Information from Visual Data
RI:中:协作研究:从视觉数据中以对象为中心推断可操作信息
  • 批准号:
    1764078
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

基于抗原抗体相互作用的抗体定向虚拟设计与筛选
  • 批准号:
    32370697
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
定向预裂爆破孔间主裂纹贯通相互作用机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
定向预裂爆破孔间主裂纹贯通相互作用机理研究
  • 批准号:
    52204106
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于海绵共生微生物种间相互作用的新颖抗菌天然产物的定向挖掘
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
锌金属蛋白酶仿生亲和配基设计及相互作用机制研究
  • 批准号:
    31900031
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mentoring the next generation of trainees in patient-oriented, community engaged research in obesity and health equity
指导下一代学员进行以患者为中心、社区参与的肥胖和健康公平研究
  • 批准号:
    10662072
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
  • 批准号:
    10785373
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Investigation of Filaggrin Gene Mutations among Latinx patients with Atopic Dermatitis
拉丁裔特应性皮炎患者丝聚蛋白基因突变的调查
  • 批准号:
    10740811
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Cerebral Autoregulation, Metabolic derangement, and Edema in Encephalopathy Outcome (CAMEEO)
脑病结果中的大脑自动调节、代谢紊乱和水肿 (CAMEEO)
  • 批准号:
    10591879
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Addressing the “Readiness Gap:” An eHealth Intervention to Increase Patient Motivation for Evidence-Based Chronic Pain Interventions and Reduced Opioid Reliance
解决“准备差距”:电子健康干预措施可提高患者对循证慢性疼痛干预措施的积极性并减少阿片类药物的依赖
  • 批准号:
    10724026
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了