Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
基本信息
- 批准号:2242930
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to develop a physics-informed real-time optimal power flow model using machine learning techniques to address the gap in providing close to optimal solutions for power plant outputs while considering practical dynamical constraints to avoid frequency fluctuations and grid instabilities. The intellectual merits of the project include developing techniques to integrate physical and dynamical principles in machine learning pipelines and methods to ensure scalable and reliable solutions to optimal power flow problems. The broader impacts of the project include significant long-term impacts on power grids, reducing carbon emissions and increasing grid reliability, especially under extreme weather, increased demand, and uncertainty from intermittent generation. The PIs will also engage with national laboratories and non-profit organizations to ensure that the developed model is accessible and usable by the broader community, including utilities, policymakers, and researchers. Furthermore, the project will provide opportunities for training and education in the intersection of physics, engineering, and machine learning, thereby contributing to the development of a skilled workforce in the field of energy and sustainability.The project makes four key scientific and engineering contributions: (1) Advancements in combining physics-informed neural networks with conventional feed-forward neural networks to predict solutions to optimal power flow problems in real-time, pursuing dynamic stability while also optimality. (2) Novel approaches of ensuring constraint satisfaction in the learned embedding. (3) Investigation of techniques to ensure scalability of training to large, realistically-sized networks. (4) Pursuit of model robustness by assessing model performance under measurement noise and analyzing model reliability to develop insights into high-quality approximations of the optimal power flow problem. The proposed model holds the promise to expedite the adoption of increased renewable energy into the power grid, reducing curtailment resulting from stability concerns and suboptimalities resulting from conventional heuristic droop control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF项目旨在使用机器学习技术开发一个物理信息实时最优潮流模型,以解决为发电厂输出提供接近最优解决方案的差距,同时考虑实际动态约束,以避免频率波动和电网不稳定性。该项目的智力优势包括开发技术,将物理和动力学原理集成到机器学习管道中,以及确保最佳潮流问题的可扩展和可靠解决方案的方法。该项目的更广泛影响包括对电网的重大长期影响,减少碳排放和提高电网可靠性,特别是在极端天气下,需求增加以及间歇性发电的不确定性。PI还将与国家实验室和非营利组织合作,以确保开发的模型可供更广泛的社区使用,包括公用事业,政策制定者和研究人员。此外,该项目还将提供物理学、工程学和机器学习交叉领域的培训和教育机会,从而促进能源和可持续发展领域熟练劳动力的发展。该项目在科学和工程方面做出了四项关键贡献:(1)将物理信息神经网络与传统馈送相结合的进展前向神经网络实时预测最优潮流问题的解,在追求动态稳定性的同时也追求最优性。(2)确保学习嵌入中约束满足的新方法。(3)研究确保训练可扩展到实际规模的大型网络的技术。(4)通过评估测量噪声下的模型性能和分析模型可靠性来追求模型鲁棒性,以深入了解最佳潮流问题的高质量近似值。该模型有望加快将更多的可再生能源引入电网,减少因稳定性问题和传统启发式下垂控制导致的次优问题而导致的限电。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gradient-enhanced physics-informed neural networks for power systems operational support
用于电力系统运行支持的梯度增强物理信息神经网络
- DOI:10.1016/j.epsr.2023.109551
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Mohammadian, Mostafa;Baker, Kyri;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyri Baker其他文献
An optimization framework for the network design of advanced district thermal energy systems
- DOI:
10.1016/j.enconman.2022.115839 - 发表时间:
2022-08-15 - 期刊:
- 影响因子:
- 作者:
Amy Allen;Gregor Henze;Kyri Baker;Gregory Pavlak;Michael Murphy - 通讯作者:
Michael Murphy
Weather-Induced Power Outage Prediction: A Comparison of Machine Learning Models
天气引起的停电预测:机器学习模型的比较
- DOI:
10.1109/smartgridcomm57358.2023.10333953 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jasmine Garland;Kyri Baker;Ben Livneh - 通讯作者:
Ben Livneh
A Framework for Optimizing Lighting in Animal Shelters for Domestic Cats
优化家猫动物收容所照明的框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kendall Baertlein;Jennifer Scheib;Kyri Baker - 通讯作者:
Kyri Baker
Modeling of a Clean Hybrid Energy System Considering Practical Limitations for Techno-Economic Energy Analysis
考虑技术经济能源分析的实际限制的清洁混合能源系统建模
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
James Hurtt;Kyri Baker - 通讯作者:
Kyri Baker
Exploring the importance of environmental justice variables for predicting energy burden in the contiguous United States
探讨环境正义变量对预测美国本土能源负担的重要性
- DOI:
10.1016/j.isci.2025.112559 - 发表时间:
2025-06-20 - 期刊:
- 影响因子:4.100
- 作者:
Jasmine Garland;Kyri Baker;Balaji Rajagopalan;Ben Livneh - 通讯作者:
Ben Livneh
Kyri Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyri Baker', 18)}}的其他基金
CAREER: Learning-Assisted Optimal Power Flow with Confidence
职业:充满信心地学习辅助最佳潮流
- 批准号:
2041835 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336368 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336367 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
- 批准号:
2345092 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321104 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
- 批准号:
2345093 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
- 批准号:
2308090 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant