Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
基本信息
- 批准号:2242930
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to develop a physics-informed real-time optimal power flow model using machine learning techniques to address the gap in providing close to optimal solutions for power plant outputs while considering practical dynamical constraints to avoid frequency fluctuations and grid instabilities. The intellectual merits of the project include developing techniques to integrate physical and dynamical principles in machine learning pipelines and methods to ensure scalable and reliable solutions to optimal power flow problems. The broader impacts of the project include significant long-term impacts on power grids, reducing carbon emissions and increasing grid reliability, especially under extreme weather, increased demand, and uncertainty from intermittent generation. The PIs will also engage with national laboratories and non-profit organizations to ensure that the developed model is accessible and usable by the broader community, including utilities, policymakers, and researchers. Furthermore, the project will provide opportunities for training and education in the intersection of physics, engineering, and machine learning, thereby contributing to the development of a skilled workforce in the field of energy and sustainability.The project makes four key scientific and engineering contributions: (1) Advancements in combining physics-informed neural networks with conventional feed-forward neural networks to predict solutions to optimal power flow problems in real-time, pursuing dynamic stability while also optimality. (2) Novel approaches of ensuring constraint satisfaction in the learned embedding. (3) Investigation of techniques to ensure scalability of training to large, realistically-sized networks. (4) Pursuit of model robustness by assessing model performance under measurement noise and analyzing model reliability to develop insights into high-quality approximations of the optimal power flow problem. The proposed model holds the promise to expedite the adoption of increased renewable energy into the power grid, reducing curtailment resulting from stability concerns and suboptimalities resulting from conventional heuristic droop control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF项目旨在使用机器学习技术来开发具有物理信息的实时最佳功率流模型,以解决该差距,以便为发电厂输出提供最佳解决方案,同时考虑实用的动态约束,以避免频率波动和网格不稳定性。该项目的智力优点包括开发技术,以整合机器学习管道中的物理和动态原理,并确保可扩展和可靠的解决方案,以解决最佳功率流问题。该项目的更广泛影响包括对电网的重大长期影响,减少碳排放和增加网格可靠性,尤其是在极端天气下,需求增加以及间歇性产生的不确定性。 PI还将与国家实验室和非营利组织互动,以确保开发的模型可以由更广泛的社区(包括公用事业,政策制定者和研究人员)访问和使用。此外,该项目将为物理,工程和机器学习的交汇处提供培训和教育的机会,从而为能源和可持续性领域的熟练劳动力的发展做出贡献。该项目的四个关键科学和工程贡献使科学和工程的贡献是:(1)进步方面的进步,在相结合的物理网络方面,可以预测传统的馈送神经网络,以预测传统的神经网络,以预测型神经网络,以预测型神经网络,以实现范围,以预测型神经网络,并促进型神经网络,并实现了范围的范围。最佳性。 (2)确保在学习的嵌入中确保限制满意度的新方法。 (3)调查技术以确保训练对大型,实际尺寸的网络的可扩展性。 (4)通过评估测量噪声下的模型性能并分析模型可靠性,以发展对最佳功率流问题的高质量近似的见解,来追求模型鲁棒性。拟议的模型有望加快将可再生能源提高到电网中的提高,从而减少了由于常规启发式下垂控制所带来的稳定性关注和次要限制而导致的缩减。该奖项反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的cribitia crietia cripitia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia均值得通过评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gradient-enhanced physics-informed neural networks for power systems operational support
用于电力系统运行支持的梯度增强物理信息神经网络
- DOI:10.1016/j.epsr.2023.109551
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Mohammadian, Mostafa;Baker, Kyri;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyri Baker其他文献
An optimization framework for the network design of advanced district thermal energy systems
- DOI:
10.1016/j.enconman.2022.115839 - 发表时间:
2022-08-15 - 期刊:
- 影响因子:
- 作者:
Amy Allen;Gregor Henze;Kyri Baker;Gregory Pavlak;Michael Murphy - 通讯作者:
Michael Murphy
Weather-Induced Power Outage Prediction: A Comparison of Machine Learning Models
天气引起的停电预测:机器学习模型的比较
- DOI:
10.1109/smartgridcomm57358.2023.10333953 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jasmine Garland;Kyri Baker;Ben Livneh - 通讯作者:
Ben Livneh
A Framework for Optimizing Lighting in Animal Shelters for Domestic Cats
优化家猫动物收容所照明的框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kendall Baertlein;Jennifer Scheib;Kyri Baker - 通讯作者:
Kyri Baker
Modeling of a Clean Hybrid Energy System Considering Practical Limitations for Techno-Economic Energy Analysis
考虑技术经济能源分析的实际限制的清洁混合能源系统建模
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
James Hurtt;Kyri Baker - 通讯作者:
Kyri Baker
Supply, demand and polarization challenges facing US climate policies
美国气候政策面临的供给、需求和两极分化挑战
- DOI:
10.1038/s41558-023-01906-y - 发表时间:
2024 - 期刊:
- 影响因子:30.7
- 作者:
M. Burgess;Leaf Van Boven;Gernot Wagner;Gabrielle Wong;Kyri Baker;Maxwell Boykoff;Benjamin A. Converse;Lisa Dilling;J. Gilligan;Y. Inbar;Ezra Markowitz;Jonathan D. Moyer;Peter Newton;K. Raimi;Trisha R. Shrum;M. Vandenbergh - 通讯作者:
M. Vandenbergh
Kyri Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyri Baker', 18)}}的其他基金
CAREER: Learning-Assisted Optimal Power Flow with Confidence
职业:充满信心地学习辅助最佳潮流
- 批准号:
2041835 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似国自然基金
基于人—信息—物理系统的双臂协作机器人安全交互方法研究
- 批准号:52375031
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
面向物理人机交互的机器人主动安全协作控制方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:52205528
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向物理人机交互的机器人主动安全协作控制方法研究
- 批准号:62203186
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336368 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336367 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant