Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
基本信息
- 批准号:2302262
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Solutions to polynomial equations form geometric shapes (for example lines, planes, curves). Thus, we can solve equations using geometry (by finding where lines, planes, curves intersect). These ideas have evolved into algebraic geometry, a field of modern mathematics with applications ranging from physics to cybersecurity. In this collaborative project we are particularly interested in the connections to physics. These connections are made through “derived categories”, a complex system of mathematical data associated to a geometric shape. While derived categories have experienced explosive development in recent decades, many questions about them remain unsolved. This project attempts to solve some of the central and most recent questions about derived categories using techniques developed by the principal investigators and many others over the last decade. This award will also support undergraduate and graduate students. This project focuses on three specific questions about derived categories. Together, these questions incorporate numerous areas of mathematics including birational geometry, enumerative geometry, and non-commutative algebra. Specifically, our first question studies connections between derived categories and birational geometry (and the possibly concealed connection between flips/flops and derived partial compactifications). We ask whether K-equivalent varieties have equivalent derived categories, a central conjecture about derived categories due to Bondal-Orlov and Kawamata. Our second question asks how decompositions of quantum cohomology are related to semi-orthogonal decompositions of derived categories. This connection is conjecturally made through mirror symmetry as proposed by Kontsevich and Kuznetsov. Finally, our third question asks how derived categories shed light on resolutions of singularities (namely as moduli spaces coming from non-commutative algebra). Here, we aim to construct non-commutative crepant resolutions using ideas from homological mirror symmetry. The existence of these resolutions has been conjectured by Van den Bergh. As a whole, this project aims to interpolate between these three questions/conjectures using techniques from geometric invariant theory, non-commutative algebra, derived algebraic geometry, and mirror symmetry. The central theme is the explicit use and construction of Fourier-Mukai kernels whose geometry provides a foothold into understanding these problems. Combining the past work of the principal investigators on the construction of Fourier-Mukai kernels, wall crossing for derived categories, and virtual fundamental cycles, we expect to advance our understanding of these fundamental questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多项式方程的解决方案形成几何形状(例如线,平面,曲线)。那就可以使用几何形状(通过查找线,平面,曲线相交的位置)求解方程。这些想法已经演变成代数几何,这是一个现代数学领域,其应用从物理学到网络安全。在这个协作项目中,我们对与物理的联系特别感兴趣。这些连接是通过“派生类别”建立的,这是一个与几何形状相关的数学数据系统的复杂系统。尽管衍生的类别在最近几十年中经历了爆炸性的发展,但有关它们的许多问题仍未解决。该项目试图使用主要研究人员和许多其他人在过去十年中开发的技术解决有关派生类别的一些中心和最新问题。该奖项还将支持本科生和研究生。该项目着重于有关派生类别的三个特定问题。总之,这些问题结合了许多数学领域,包括生物几何形状,枚举几何学和非共同代数。具体而言,我们的第一个问题研究是衍生类别与生物几何形状之间的联系(以及fllips/flops和派生的部分压缩之间可能的隐蔽连接)。我们询问K-等效品种是否具有等效的衍生类别,这是一个核心类别的核心概念,该类别是由于邦德 - 奥洛夫和卡瓦玛塔而引起的。我们的第二个问题询问量子共同体的分解与派生类别的半正交分解有关。这种连接是通过Kontsevich和Kuznetsov提出的镜像对称性进行猜想的。最后,我们的第三个问题询问派生类别是如何阐明奇异性分辨率的(即来自非共同代数的模量空间)。在这里,我们旨在使用同源镜子对称性中的思想来构建非交流性的毛茸茸的决议。这些决议的存在是由van den Bergh猜想的。总体而言,该项目旨在使用几何不变理论,非交通式代数,派生的代数几何形状和镜像对称性的技术插值这三个问题/猜想。中心主题是明确使用和构建傅里叶 - 木核,其几何形状为理解这些问题提供了立足点。结合了主要研究人员在建造傅立叶核内核,衍生类别的墙壁交叉以及虚拟基本周期的过去工作,我们希望提高我们对这些基本问题的理解。该奖项反映了NSF的法定任务,并通过该基金会的知识分子优点和广泛的影响来评估NSF的法定任务,并被认为是值得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Favero其他文献
Homological Projective Duality via Variation of Geometric Invariant Theory Quotients
通过几何不变理论商的变分的同调射影对偶性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Matthew R. Ballard;Dragos Deliu;David Favero;M. U. Isik;L. Katzarkov - 通讯作者:
L. Katzarkov
Windows for cdgas
cdgas 的 Windows
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.7
- 作者:
N. Chidambaram;David Favero - 通讯作者:
David Favero
A category of kernels for equivariant factorizations, II: Further implications
等变分解的核的类别,II:进一步的含义
- DOI:
10.1016/j.matpur.2014.02.004 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Matthew R. Ballard;David Favero;L. Katzarkov - 通讯作者:
L. Katzarkov
Kernels for Grassmann flops
Grassmann 失败的内核
- DOI:
10.1016/j.matpur.2021.01.005 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Matthew R. Ballard;N. Chidambaram;David Favero;P. McFaddin;Robert Vandermolen - 通讯作者:
Robert Vandermolen
An Orbit Construction of Phantoms, Orlov Spectra, and Knörrer Periodicity
幻影、奥尔洛夫谱和克诺勒周期的轨道构建
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
David Favero;F. Haiden;L. Katzarkov - 通讯作者:
L. Katzarkov
David Favero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Favero', 18)}}的其他基金
EAPSI: Investigating molecular connections between internal and external cues that affect seedling development
EAPSI:研究影响幼苗发育的内部和外部线索之间的分子联系
- 批准号:
1414471 - 财政年份:2014
- 资助金额:
$ 28万 - 项目类别:
Fellowship Award
相似国自然基金
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
- 批准号:82373758
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
甲壳素/壳聚糖与碳酸酯化合物的反应规律及其衍生新材料性质研究
- 批准号:22365010
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
炔丙醇衍生物的不对称共轭二烯基化反应研究
- 批准号:22371125
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于原位钩钓策略的Pyxinol衍生物逆转肿瘤多药耐药的别构靶点识别研究
- 批准号:22377104
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
TruB1介导的tRNA衍生片段tRF-22-WB8647O52假尿苷修饰调控肝癌中Caspase-1 信号通路的机制研究
- 批准号:82372924
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Evolution and fate of wind-derived internal wave energy
合作研究:风生内波能的演化和命运
- 批准号:
2319609 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: Evolution and fate of wind-derived internal wave energy
合作研究:风生内波能的演化和命运
- 批准号:
2319611 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR: Swarm over Poker 2023--An Auroral System-Science Campaign Exemplar of Archiving and Aharing Heterogeneously-Derived Data Products
合作研究:CEDAR:Swarm over Poker 2023——极光系统科学运动归档和共享异构数据产品的范例
- 批准号:
2329981 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR: Swarm over Poker 2023--An Auroral System-Science Campaign Exemplar of Archiving and Aharing Heterogeneously-Derived Data Products
合作研究:CEDAR:Swarm over Poker 2023——极光系统科学运动归档和共享异构数据产品的范例
- 批准号:
2329979 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Engineered Hydrogel Elucidates the Contribution of ECM Stiffness to Barrett's Esophagus Pathogenesis
工程水凝胶阐明了 ECM 硬度对巴雷特食管发病机制的影响
- 批准号:
10664561 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别: