A Multi-Rate Feedback Control Framework for Design and Analyzing of Decentralized and Federated Learning
用于设计和分析去中心化联邦学习的多速率反馈控制框架
基本信息
- 批准号:2311007
- 负责人:
- 金额:$ 47.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Distributed systems hold great promise to realize scalable processing and real-time intelligence required for our modern life, revolutionizing how we interact with technology and enabling us to easily tackle complex problems. However, despite extensive research in distributed algorithms and systems, several challenges persist in their synthesis and application. In particular, the current algorithm design process is not scalable. Indeed one needs to design a new algorithm and develop the corresponding analysis specific to each application scenario and set of requirements. There has been an urgent need to unify various subclasses of distributed algorithms to provide insights and streamline the design and analysis. The framework developed in this project will benefit a wide range of applications beyond machine learning, such as control theory and signal processing. The proposed activities also offer rich opportunities for engaging undergraduate students in cross-disciplinary research and K-12 outreach activities.This proposal advocates a generic “model” of distributed algorithms by leveraging theory and techniques from stochastic multi-rate feedback control systems. Such a generic model can abstract important features of distributed algorithms, such as guaranteed differential privacy, compressed communication, or occasional communication, into tractable modules. Building upon these abstract models, we design a framework with superior modeling power to encompass a substantial class of distributed algorithms. Such a framework can be used to analyze the entire algorithm class, but more importantly, it helps streamline the design of new algorithms in the sense that features arising from different application domains can be easily integrated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分布式系统在实现我们现代生活所需的可扩展处理和实时智能方面前景广阔,彻底改变了我们与技术的交互方式,使我们能够轻松解决复杂问题。然而,尽管在分布式算法和系统中进行了广泛的研究,但在其合成和应用中仍然存在一些挑战。特别是,目前的算法设计过程是不可扩展的。实际上,需要设计一种新的算法,并针对每个应用场景和需求集开发相应的分析。有一个迫切需要统一的分布式算法的各种子类,以提供见解和简化的设计和分析。在这个项目中开发的框架将有利于机器学习以外的广泛应用,如控制理论和信号处理。建议的活动也提供了丰富的机会,让本科生参与跨学科的研究和K-12的推广activities.This建议倡导一个通用的“模型”的分布式算法,利用理论和技术,从随机多速率反馈控制系统。这样的通用模型可以将分布式算法的重要特征,如保证差分隐私,压缩通信或偶尔通信,抽象成易于处理的模块。在这些抽象模型的基础上,我们设计了一个具有上级建模能力的框架,以包含大量的分布式算法。该框架不仅可以用于分析整个算法类,更重要的是,可以将不同应用领域的功能轻松整合,从而简化新算法的设计。该奖项体现了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingyi Hong其他文献
Decentralized Min-Max Optimization: Formulations, Algorithms and Applications in Network Poisoning Attack
去中心化最小-最大优化:网络中毒攻击中的公式、算法和应用
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ioannis C. Tsaknakis;Mingyi Hong;Sijia Liu - 通讯作者:
Sijia Liu
A Distributed, Asynchronous and Incremental Algorithm for Nonconvex Optimization: An ADMM Based Approach
- DOI:
- 发表时间:
2014-12 - 期刊:
- 影响因子:0
- 作者:
Mingyi Hong - 通讯作者:
Mingyi Hong
Asynchronous Advantage Actor Critic: Non-asymptotic Analysis and Linear Speedup
异步优势演员评论家:非渐近分析和线性加速
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Han Shen;K. Zhang;Mingyi Hong;Tianyi Chen - 通讯作者:
Tianyi Chen
Penalty Dual Decomposition Method for Nonsmooth Nonconvex Optimization—Part II: Applications
非光滑非凸优化的惩罚对偶分解方法-第二部分:应用
- DOI:
10.1109/tsp.2020.3001397 - 发表时间:
2020-06 - 期刊:
- 影响因子:5.4
- 作者:
Qingjiang Shi;Mingyi Hong;Xiao Fu;Tsung-Hui Chang - 通讯作者:
Tsung-Hui Chang
Efficient Distributed Optimization of Wind Farms Using Proximal Primal-Dual Algorithms
使用近端原对偶算法进行风电场的高效分布式优化
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Annoni;E. Dall’Anese;Mingyi Hong;C. Bay - 通讯作者:
C. Bay
Mingyi Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingyi Hong', 18)}}的其他基金
Conference: NSF Workshop on the Convergence of Smart Sensing Systems, Applications, Analytic and Decision Making
会议:NSF 智能传感系统、应用、分析和决策融合研讨会
- 批准号:
2334288 - 财政年份:2023
- 资助金额:
$ 47.2万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003033 - 财政年份:2020
- 资助金额:
$ 47.2万 - 项目类别:
Standard Grant
CIF: Small: A Simple and Unifying Optimization Framework for Signal and Information Processing Problems with Min-Max Structures
CIF:Small:针对具有最小-最大结构的信号和信息处理问题的简单且统一的优化框架
- 批准号:
1910385 - 财政年份:2019
- 资助金额:
$ 47.2万 - 项目类别:
Standard Grant
Decomposition Framework for Non-convex Nonsmooth Optimization with Applications in Data Analytics
非凸非光滑优化的分解框架及其在数据分析中的应用
- 批准号:
1727757 - 财政年份:2017
- 资助金额:
$ 47.2万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Optimal Provision of Backhaul and Radio Access Networks: A Cross-Network Approach
CIF:小型:协作研究:回程和无线接入网络的优化配置:跨网络方法
- 批准号:
1813090 - 财政年份:2017
- 资助金额:
$ 47.2万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Optimal Provision of Backhaul and Radio Access Networks: A Cross-Network Approach
CIF:小型:协作研究:回程和无线接入网络的优化配置:跨网络方法
- 批准号:
1526078 - 财政年份:2015
- 资助金额:
$ 47.2万 - 项目类别:
Standard Grant
相似国自然基金
基于chirp-rate调制的混合扩频理论与方法研究
- 批准号:60902054
- 批准年份:2009
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A photoplethysmography sensor-based personalized feedback intervention for heavy-drinking young adults targeting heart rate variability, resting heart rate, and sleep
基于光电体积描记法传感器的个性化反馈干预,针对酗酒的年轻人,针对心率变异性、静息心率和睡眠
- 批准号:
10302389 - 财政年份:2021
- 资助金额:
$ 47.2万 - 项目类别:
A photoplethysmography sensor-based personalized feedback intervention for heavy-drinking young adults targeting heart rate variability, resting heart rate, and sleep
基于光电体积描记法传感器的个性化反馈干预,针对酗酒的年轻人,针对心率变异性、静息心率和睡眠
- 批准号:
10478176 - 财政年份:2021
- 资助金额:
$ 47.2万 - 项目类别:
CAREER: The Lapse Rate Feedback and Other Mechanisms of High-Latitude Climate Change
职业:高纬度气候变化的失效率反馈和其他机制
- 批准号:
1753034 - 财政年份:2018
- 资助金额:
$ 47.2万 - 项目类别:
Standard Grant
Development of the smart swimwear for heart rate measurement and application for underwater-training feedback system
心率测量智能泳衣开发及水下训练反馈系统应用
- 批准号:
17K01655 - 财政年份:2017
- 资助金额:
$ 47.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-antenna Communications with Finite-Rate Feedback
具有有限速率反馈的多天线通信
- 批准号:
0728955 - 财政年份:2007
- 资助金额:
$ 47.2万 - 项目类别:
Standard Grant
Middle and Upper Devonian Black Shales: Testing the Productivity-Anoxia Feedback and Land Plant-Weathering Rate Hypotheses
中、上泥盆统黑色页岩:检验生产力缺氧反馈和陆地植物风化率假设
- 批准号:
0618003 - 财政年份:2006
- 资助金额:
$ 47.2万 - 项目类别:
Continuing grant
Effects of Base Rate, Environmental Uncertainty, Values, and Feedback on Accuracy and Performance in Selection and Detection Decision Making
基准率、环境不确定性、值和反馈对选择和检测决策的准确性和性能的影响
- 批准号:
0451850 - 财政年份:2005
- 资助金额:
$ 47.2万 - 项目类别:
Continuing Grant
FEEDBACK ACTIONS AND METABOLIC CLEARANCE RATE OF IGF I
IGF I 的反馈作用和代谢清除率
- 批准号:
6279356 - 财政年份:1997
- 资助金额:
$ 47.2万 - 项目类别:
FEEDBACK ACTIONS AND METABOLIC CLEARANCE RATE OF HUMAN RECOMBINANT IGF
人重组 IGF 的反馈作用和代谢清除率
- 批准号:
6249327 - 财政年份:1997
- 资助金额:
$ 47.2万 - 项目类别:
Research Initiation: Rate Allocation Feedback Control for aClass of Supervisory Control Problems
研究起点:一类监督控制问题的速率分配反馈控制
- 批准号:
8404607 - 财政年份:1984
- 资助金额:
$ 47.2万 - 项目类别:
Standard Grant