Collaborative Research: Design, Modeling and Active Learning of Quantitative-Sequence Experiments
协作研究:定量序列实验的设计、建模和主动学习
基本信息
- 批准号:2311187
- 负责人:
- 金额:$ 18.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A new type of experiment concerning both quantitative and sequence (QS) factors has recently drawn great attention in science and engineering applications. In chemotherapy, to develop efficient drug combinations involving several drug components, researchers need to conduct experiments optimizing both the doses and the sequence orders of drug components. Such a problem raises new challenges for statisticians since the input space is semi-discrete and grows exponentially with the number of drugs. Researchers rely more than ever on statistical modeling and active learning to identify optimal settings given limited experimental resources. Additionally, QS experiments often have specific requirements. In the computer experiment for metal additive manufacturing processes, the output response is binary (success/failure), and it requires both interpolation and uncertainty quantification, which is an unsolved problem in the current literature. In this project, the investigators will provide systematic solutions to QS experiments, addressing challenges in design, modeling, uncertainty quantification, and active learning. The outcome of this project will help save experimental costs in applications involving QS factors. The applications to chemotherapy will help advance cancer research in the U.S., while the applications to manufacturing processes will enhance the industrial competitiveness of the U.S. Also, this project provides research training opportunities for graduate students. Active learning in experiments, aka reinforcement learning under the broad context of machine learning, allocates runs in an adaptive manner, which is generally more efficient than one-shot experiments for optimizing the experimental settings. This project will establish new Gaussian process-based models for physical experiments with QS factors, based on which new active learning procedures will be developed. For analyzing computer experiments, a novel Hopfield process (HP) framework will be established as an accurate surrogate for interpolating binary (and categorical) outputs, which will facilitate uncertainty quantification and active learning. Optimal QS experimental designs will also be constructed by combing several Williams-transformed good lattice point sets, which possess desirable properties including space-filling, orthogonality, and paired balance. This research project will provide systematic solutions for various types of QS experiments that are of interest in scientific research and industrial applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
关于定量和序列(QS)因素的一种新型实验最近引起了科学和工程应用的极大关注。在化学疗法中,为了开发涉及多种药物成分的有效药物组合,研究人员需要进行优化药物成分剂量和序列顺序的实验。这样的问题引起了统计学家的新挑战,因为输入空间是半分化的,并且随着毒品的数量而呈指数增长。在有限的实验资源下,研究人员比以往任何时候都更依赖统计建模和积极学习来确定最佳设置。此外,QS实验通常具有特定的要求。在用于金属添加剂制造过程的计算机实验中,输出响应是二进制的(成功/失败),并且需要插值和不确定性量化,这在当前文献中是未解决的问题。在该项目中,研究人员将为QS实验提供系统的解决方案,解决设计,建模,不确定性量化和主动学习方面的挑战。该项目的结果将有助于节省涉及QS因素的应用中的实验成本。化学疗法的应用将有助于推进美国的癌症研究,而制造过程的应用也将增强美国的工业竞争力,该项目为研究生提供了研究培训机会。在实验中的积极学习,又称强化学习在机器学习的广泛背景下,以自适应方式进行分配,这通常比一击实验更有效,以优化实验设置。该项目将基于QS因素建立新的基于高斯的过程模型,以开发新的主动学习程序。为了分析计算机实验,将建立一个新型的Hopfield过程(HP)框架,作为插值二进制(和分类)输出的准确替代物,这将促进不确定性定量和主动学习。最佳QS实验设计也将通过梳理几个威廉姆斯转换的良好晶格集来构建,这些晶格集具有所需的特性,包括空间填充,正交性和配对平衡。该研究项目将为在科学研究和工业应用中感兴趣的各种QS实验提供系统解决方案。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinwei Deng其他文献
On Design and Analysis of Funnel Testing Experiments in Webpage Optimization
网页优化中漏斗测试实验的设计与分析
- DOI:
10.1007/s42519-019-0068-1 - 发表时间:
2019 - 期刊:
- 影响因子:0.6
- 作者:
Sumin Shen;Zhiyang Zhang;Xinwei Deng - 通讯作者:
Xinwei Deng
EI-Optimal Design: An Efficient Algorithm for Elastic I-optimal Design of Generalized Linear Models
EI 最优设计:广义线性模型弹性 I 最优设计的有效算法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yiou Li;Xinwei Deng - 通讯作者:
Xinwei Deng
Deep Neural Network Pipelines for Multivariate Time Series Classification in Smart Manufacturing
用于智能制造中多元时间序列分类的深度神经网络管道
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Parshin Shojaee;Yingyan Zeng;Xiaoyu Chen;R. Jin;Xinwei Deng;Chuck Zhang - 通讯作者:
Chuck Zhang
A statistics-guided approach to dimensional quality characterization of free-form surfaces with an application to 3D printing
一种统计引导的自由曲面尺寸质量表征方法及其在 3D 打印中的应用
- DOI:
10.1080/08982112.2020.1740258 - 发表时间:
2020-05 - 期刊:
- 影响因子:2
- 作者:
Hao Wang;Qiong Zhang;Kaibo Wang;Xinwei Deng - 通讯作者:
Xinwei Deng
An uncertainty quantification framework for agent-based modeling and simulation in networked anagram games
网络字谜游戏中基于代理的建模和模拟的不确定性量化框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Zhihao Hu;Xueying Liu;Xinwei Deng;C. Kuhlman - 通讯作者:
C. Kuhlman
Xinwei Deng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinwei Deng', 18)}}的其他基金
Collaborative Research: A Statistics-Guided Framework for Synthesis and Characterization of Nanomaterials
合作研究:纳米材料合成和表征的统计指导框架
- 批准号:
1233571 - 财政年份:2012
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
相似国自然基金
载人飞行器-地形共融多平台协作起降机构设计及容错控制研究
- 批准号:52305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于不完善信息的协作型多智能体系统设计与优化技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全感知智能力控机器人系统设计及安全人机协作控制方法研究
- 批准号:U22A2060
- 批准年份:2022
- 资助金额:255.00 万元
- 项目类别:联合基金项目
基于不完善信息的协作型多智能体系统设计与优化技术研究
- 批准号:62206091
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向人机协作的人机交互界面设计机制研究
- 批准号:72271053
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
- 批准号:
2321297 - 财政年份:2024
- 资助金额:
$ 18.2万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 18.2万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant