Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds
超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物
基本信息
- 批准号:2316007
- 负责人:
- 金额:$ 34.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports research and education aimed to make significant advances in simulation and computational approaches for studies of atomic and electronic structures of materials. Understanding, design, and prediction of new types of materials involve solving the equations that describe fundamental quantum mechanical laws for complex, many-particle systems at the level of quantum mechanics. Such solutions are exceptionally difficult to obtain due to major mathematical, algorithmic and computational challenges as well as due to exceedingly high accuracy required for real world applications. In addition, research on new materials often involves very intricate interplays of quantum phenomena that provide unexpected opportunities to discover materials and new functionalities for information processing, optical, magnetic and host of other applications. This may lead to the discovery of new quantum states of electrons that exist in materials. The proposed research ideas build upon previous developments of methods known as quantum Monte Carlo, that are particularly promising in overcoming many of the fundamental challenges involved. This successful strategy combines analytical insights, statistical sampling techniques and the power of parallel architecture computing machines into unique and powerful tools that enable us to attack areas of quantum research that were unthinkable even a few years ago. Key developments involve new algorithms that significantly increase robustness and accuracy of calculating crucial characteristics of materials using a more powerful mathematical framework and more efficient algorithmic constructions. These developments will be applied to two intensely studied groups of materials: i) hydrogen compounds, which are putatively claimed to be new superconductors that would work close to room temperatures; ii) to compounds that exhibit strong quantum phenomena that are essential for optical applications as well as for occurrence of new quantum states of matter. Proposed projects will provide exciting research, education, and training opportunities for students in quantum physics, computational and simulation techniques, all of which are crucial for technological advances in general and for the next generation workforce. These research and education activities offer a stimulating environment for aspiring young scientists from the growing body of NCSU students, the largest in North Carolina, that includes many students from rural and disadvantaged communities. Acquired skills in analytical, computational, and modelling techniques are in high demand on job markets throughout academia, national laboratories, and a variety of industries. Preparation to take advantage of such opportunities leads to attractive, highly paid, and intellectually rewarding career paths for future STEM workforce. TECHNICAL SUMMARYThis award supports research and education aimed to make significant advances in simulation and computational approaches for studies of atomic and electronic structures of materials. Electronic structure quantum Monte Carlo (QMC) methods are routinely used to calculate fundamental gaps, cohesion energies, electronic densities, and other properties by solving the stationary Schroedinger equation with high accuracy explicitly using correlated many-body wave functions. In this project the PI will expand the ability of QMC many-body wave function methods to describe excitons and excitonic related phenomena in systems with significant electron correlations. For this purpose, pair orbital-based wave functions combined with recent developments that involve two-component spinors will be explored to capture strong correlations in systems that involve magnetic, optical, and collective electronic states. In particular, this form enables the description of exciton condensates in a variety of materials. The next area of interest involves the application of QMC methods to binary hydride compounds involving a heavier element such as sulfur or yttrium that are putatively claimed to exhibit near-room temperature superconductivity particularly at high pressures. However, due to experimental challenges the existing data is very limited and our understanding of these materials and phenomena is very far from being settled. The plans involve applications of QMC methods to elucidate atomic and electronic structures, equations of state, and the role of proton zero-point motion and anharmonic effects in these compounds. At the fundamental level, recent developments for spin-dependent interactions enable smooth variation between fixed-node and fixed-phase versions of QMC. This opens new possibilities to increase variational freedom as well as to reach beyond the current fixed node/phase accuracy limit. The intention is to explore directions that have potential to decrease the commonly encountered fixed-node/phase bias by almost an order of magnitude, opening new avenues for insights into electron-electron correlations and intricate quantum phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持旨在为材料的原子和电子结构研究在模拟和计算方法方面取得重大进展的研究和教育。理解、设计和预测新型材料涉及在量子力学水平上求解描述复杂多粒子系统基本量子力学定律的方程。由于主要的数学、算法和计算挑战以及由于真实的世界应用所需的极高精度,这样的解决方案非常难以获得。此外,对新材料的研究往往涉及量子现象的非常复杂的相互作用,这为发现材料和信息处理、光学、磁性和其他应用的新功能提供了意想不到的机会。这可能会导致发现存在于材料中的电子的新量子态。拟议的研究思路建立在量子蒙特卡罗方法的先前发展基础上,这些方法在克服所涉及的许多基本挑战方面特别有前途。这一成功的策略将分析洞察力、统计采样技术和并行架构计算机器的强大功能结合成独特而强大的工具,使我们能够攻击几年前无法想象的量子研究领域。关键的发展涉及新的算法,这些算法使用更强大的数学框架和更有效的算法构造,显着提高了计算材料关键特性的鲁棒性和准确性。这些发展将应用于两组深入研究的材料:i)氢化合物,据称是在接近室温下工作的新超导体; ii)表现出强量子现象的化合物,这些现象对于光学应用以及物质的新量子态的出现至关重要。拟议的项目将为量子物理,计算和模拟技术的学生提供令人兴奋的研究,教育和培训机会,所有这些都对技术进步和下一代劳动力至关重要。这些研究和教育活动为来自北卡罗来纳州最大的NCSU学生群体的有抱负的年轻科学家提供了一个激励的环境,其中包括许多来自农村和弱势社区的学生。在分析,计算和建模技术方面获得的技能在整个学术界,国家实验室和各种行业的就业市场上需求量很大。准备利用这些机会,为未来的STEM劳动力提供有吸引力,高薪和智力回报的职业道路。该奖项支持旨在为材料的原子和电子结构研究在模拟和计算方法方面取得重大进展的研究和教育。电子结构量子蒙特卡罗(QMC)方法通常用于计算基本带隙、凝聚能、电子密度和其他性质,通过使用相关多体波函数以高精度显式求解定态薛定谔方程。在这个项目中,PI将扩展QMC多体波函数方法的能力,以描述具有显着电子相关性的系统中的激子和激子相关现象。为此目的,对轨道为基础的波函数结合最近的发展,涉及两个组件旋量将探索捕捉强相关性的系统,涉及磁,光,集体电子状态。特别是,这种形式使得在各种材料中的激子凝聚体的描述。下一个感兴趣的领域涉及QMC方法的应用,以二元氢化物化合物,涉及一个较重的元素,如硫或钇,被puancorously声称表现出近室温的超导性,特别是在高压下。然而,由于实验的挑战,现有的数据是非常有限的,我们对这些材料和现象的理解是非常遥远的被解决。这些计划涉及QMC方法的应用,以阐明原子和电子结构,状态方程,以及质子零点运动和非谐效应在这些化合物中的作用。在基本水平上,自旋相关相互作用的最新发展使QMC的固定节点和固定相位版本之间的平滑变化成为可能。这为增加变分自由度以及超越当前固定节点/相位精度极限开辟了新的可能性。其目的是探索有可能将常见的固定节点/相位偏差降低近一个数量级的方向,为深入了解电子-电子相关性和复杂的量子现象开辟新的途径。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lubos Mitas其他文献
Weighted nodal domain averages of eigenstates for quantum Monte Carlo and beyond
- DOI:
10.1016/j.chemphys.2022.111483 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Lubos Mitas;Abdulgani Annaberdiyev - 通讯作者:
Abdulgani Annaberdiyev
My recent collaborations/QMC calculation on Cr dimer
我最近对 Cr 二聚体的合作/QMC 计算
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ryo Maezono;Lucas K. Wagner;Michal Bajdich;Jindrich Kolorenc;Lubos Mitas;K. Kusakabe;Ryo MAEZONO - 通讯作者:
Ryo MAEZONO
The 2019 materials by design roadmap
- DOI:
10.1088/1361-6463/aad926 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Kirstin Alberi;Marco Buongiorno Nardelli;Andriy Zakutayev;Lubos Mitas;Stefano Curtarolo;Anubhav Jain;Marco Fornari;Nicola Marzari;Ichiro Takeuchi;Martin L Green;Mercouri Kanatzidis;Mike F Toney;Sergiy Butenko;Bryce Meredig;Stephan Lany;Ursula Kattner;Albe - 通讯作者:
Albe
Diffusion Monte Carlo study on Chromium dimer
二聚体铬的扩散蒙特卡罗研究
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ryo Maezono;Lucas K. Wagner;Michal Bajdich;Jindrich Kolorenc;Lubos Mitas - 通讯作者:
Lubos Mitas
Two-Site Shift Product Wave Function Renormalization Group Method Applied to Quantum Systems
应用于量子系统的二位平移积波函数重正化群方法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ryo Maezono;Lucas K. Wagner;Michal Bajdich;Jindrich Kolorenc;Lubos Mitas;K. Kusakabe;Ryo MAEZONO;H. Ueda - 通讯作者:
H. Ueda
Lubos Mitas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lubos Mitas', 18)}}的其他基金
CDS&E: Quantum Monte Carlo Methods for Electron Correlations and Spin-Orbit Effects in Low-Dimensional Materials
CDS
- 批准号:
1410639 - 财政年份:2014
- 资助金额:
$ 34.65万 - 项目类别:
Continuing Grant
Collaborative Research: Petascale Simulations of Quantum Systems by Stochastic Methods: Tools and Applications
合作研究:通过随机方法对量子系统进行千万亿次模拟:工具和应用
- 批准号:
0904794 - 财政年份:2009
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
Collaborative Research: CMG: Quantum Monte Carlo Calculations of Deep Earth Materials
合作研究:CMG:地球深部材料的量子蒙特卡罗计算
- 批准号:
0530110 - 财政年份:2005
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
Many-Body Computational Methods for Electronic Structure of Cluster and Molecular Nanosystems
团簇和分子纳米系统电子结构的多体计算方法
- 批准号:
0102668 - 财政年份:2001
- 资助金额:
$ 34.65万 - 项目类别:
Continuing Grant
相似国自然基金
DDH头臼匹配性三维空间形态表征及PAO
手术髋臼重定向Monte Carlo随机最优控
制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
- 批准号:12372297
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
复杂空间上具有特殊约束的Monte Carlo方法
- 批准号:12371269
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于格子Boltzmann和Monte Carlo方法的中子输运本构关系及低维控制方程研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在大数据和复杂模型背景下探究更有效的Markov chain Monte Carlo算法
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Monte Carlo模拟的铒基稀土高掺杂纳米材料上转换发光过程的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嵌段共聚物在软硬壁组成的受限空间中的诱导自组装行为的Monte Carlo 研究
- 批准号:21863010
- 批准年份:2018
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
间接优化的高效Monte Carlo声传播研究
- 批准号:61772458
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
基于Monte Carlo法强化管表面颗粒-析晶垢形成机理及预测模型研究
- 批准号:51606049
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
任意各向异性三维直流电阻率巷道超前探测的并行Monte Carlo方法研究
- 批准号:41674076
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
RUI New Generation of AI-Augmented Quantum Monte Carlo Libraries to Guide the Search for Exotic Superfluid Phases in Cold Atoms
RUI 新一代人工智能增强量子蒙特卡罗库指导冷原子中奇异超流体相的搜索
- 批准号:
2207048 - 财政年份:2022
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
Quantum Monte Carlo studies of periodic many-body systems
周期性多体系统的量子蒙特卡罗研究
- 批准号:
2731113 - 财政年份:2022
- 资助金额:
$ 34.65万 - 项目类别:
Studentship
Study of novel quantum properties in low dimensional He systems using the Quantum Monte Carlo method.
使用量子蒙特卡罗方法研究低维 He 系统中的新颖量子特性。
- 批准号:
21K03451 - 财政年份:2021
- 资助金额:
$ 34.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of computational positron spectroscopy based on quantum Monte Carlo method
基于量子蒙特卡罗方法的计算正电子能谱研究进展
- 批准号:
21K04983 - 财政年份:2021
- 资助金额:
$ 34.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accurate Quantum Chemistry of Protein Active Sites using Auxiliary-Field Quantum Monte Carlo
使用辅助场量子蒙特卡罗对蛋白质活性位点进行精确的量子化学分析
- 批准号:
9911383 - 财政年份:2020
- 资助金额:
$ 34.65万 - 项目类别:
Accurate Quantum Chemistry of Protein Active Sites using Auxiliary-Field Quantum Monte Carlo
使用辅助场量子蒙特卡罗对蛋白质活性位点进行精确的量子化学分析
- 批准号:
10084166 - 财政年份:2020
- 资助金额:
$ 34.65万 - 项目类别:
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
- 批准号:
2038030 - 财政年份:2020
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
- 批准号:
2037984 - 财政年份:2020
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
Machine Learning Applications for Quantum Monte Carlo
量子蒙特卡罗的机器学习应用
- 批准号:
544955-2019 - 财政年份:2019
- 资助金额:
$ 34.65万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Geometry optimization of large molecules with quantum Monte Carlo
利用量子蒙特卡罗对大分子进行几何优化
- 批准号:
414171116 - 财政年份:2018
- 资助金额:
$ 34.65万 - 项目类别:
Research Fellowships