Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds

超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物

基本信息

  • 批准号:
    2316007
  • 负责人:
  • 金额:
    $ 34.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports research and education aimed to make significant advances in simulation and computational approaches for studies of atomic and electronic structures of materials. Understanding, design, and prediction of new types of materials involve solving the equations that describe fundamental quantum mechanical laws for complex, many-particle systems at the level of quantum mechanics. Such solutions are exceptionally difficult to obtain due to major mathematical, algorithmic and computational challenges as well as due to exceedingly high accuracy required for real world applications. In addition, research on new materials often involves very intricate interplays of quantum phenomena that provide unexpected opportunities to discover materials and new functionalities for information processing, optical, magnetic and host of other applications. This may lead to the discovery of new quantum states of electrons that exist in materials. The proposed research ideas build upon previous developments of methods known as quantum Monte Carlo, that are particularly promising in overcoming many of the fundamental challenges involved. This successful strategy combines analytical insights, statistical sampling techniques and the power of parallel architecture computing machines into unique and powerful tools that enable us to attack areas of quantum research that were unthinkable even a few years ago. Key developments involve new algorithms that significantly increase robustness and accuracy of calculating crucial characteristics of materials using a more powerful mathematical framework and more efficient algorithmic constructions. These developments will be applied to two intensely studied groups of materials: i) hydrogen compounds, which are putatively claimed to be new superconductors that would work close to room temperatures; ii) to compounds that exhibit strong quantum phenomena that are essential for optical applications as well as for occurrence of new quantum states of matter. Proposed projects will provide exciting research, education, and training opportunities for students in quantum physics, computational and simulation techniques, all of which are crucial for technological advances in general and for the next generation workforce. These research and education activities offer a stimulating environment for aspiring young scientists from the growing body of NCSU students, the largest in North Carolina, that includes many students from rural and disadvantaged communities. Acquired skills in analytical, computational, and modelling techniques are in high demand on job markets throughout academia, national laboratories, and a variety of industries. Preparation to take advantage of such opportunities leads to attractive, highly paid, and intellectually rewarding career paths for future STEM workforce. TECHNICAL SUMMARYThis award supports research and education aimed to make significant advances in simulation and computational approaches for studies of atomic and electronic structures of materials. Electronic structure quantum Monte Carlo (QMC) methods are routinely used to calculate fundamental gaps, cohesion energies, electronic densities, and other properties by solving the stationary Schroedinger equation with high accuracy explicitly using correlated many-body wave functions. In this project the PI will expand the ability of QMC many-body wave function methods to describe excitons and excitonic related phenomena in systems with significant electron correlations. For this purpose, pair orbital-based wave functions combined with recent developments that involve two-component spinors will be explored to capture strong correlations in systems that involve magnetic, optical, and collective electronic states. In particular, this form enables the description of exciton condensates in a variety of materials. The next area of interest involves the application of QMC methods to binary hydride compounds involving a heavier element such as sulfur or yttrium that are putatively claimed to exhibit near-room temperature superconductivity particularly at high pressures. However, due to experimental challenges the existing data is very limited and our understanding of these materials and phenomena is very far from being settled. The plans involve applications of QMC methods to elucidate atomic and electronic structures, equations of state, and the role of proton zero-point motion and anharmonic effects in these compounds. At the fundamental level, recent developments for spin-dependent interactions enable smooth variation between fixed-node and fixed-phase versions of QMC. This opens new possibilities to increase variational freedom as well as to reach beyond the current fixed node/phase accuracy limit. The intention is to explore directions that have potential to decrease the commonly encountered fixed-node/phase bias by almost an order of magnitude, opening new avenues for insights into electron-electron correlations and intricate quantum phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持研究和教育,旨在在模拟和计算方法方面取得重大进展,以研究原子和电子结构的材料结构。了解新型材料的理解,设计和预测涉及求解描述量子力学水平复杂的多粒子系统基本量子力学定律的方程。由于重大的数学,算法和计算挑战以及由于现实世界应用所需的精度非常高,因此难以获得此类解决方案。此外,对新材料的研究通常涉及量子现象的非常复杂的相互作用,这些相互作用提供了意外的机会,可以发现信息处理,光学,磁性和其他应用的新功能。这可能会导致发现材料中存在的电子的新量子状态。拟议的研究思想以先前的量子蒙特卡洛的发展为基础,这些方法在克服许多基本挑战方面尤其有希望。这种成功的策略结合了分析见解,统计抽样技术和并行体系结构计算机的功能,使我们能够攻击几年前甚至几年前都无法想象的量子研究领域。主要的发展涉及新算法,这些算法可显着提高使用更强大的数学框架和更有效的算法结构来计算材料关键特征的鲁棒性和准确性。这些发展将应用于两种经过深入研究的材料组:i)氢化合物,这些化合物被推测为新的超导体,可以接近室温; ii)对于表现出强量子现象的化合物,这对于光学应用以及新的物质量子状态至关重要。拟议的项目将为量子物理学,计算和仿真技术的学生提供令人兴奋的研究,教育和培训机会,所有这些都对一般的技术进步和下一代劳动力至关重要。这些研究和教育活动为来自北卡罗来纳州最大的NCSU学生的有抱负的年轻科学家提供了一个刺激性的环境,其中包括许多来自农村和不利社区的学生。获得分析,计算和建模技术的技能对整个学术界,国家实验室和各种行业的就业市场需求很高。准备利用此类机会的准备可以为未来的STEM劳动力带来吸引力,高薪和知识上有回报的职业道路。技术摘要奖支持研究和教育,旨在在模拟和计算方法方面取得重大进展,以研究原子和电子结构的材料结构。电子结构量子蒙特卡洛(QMC)方法通常用于计算基本间隙,内聚力能,电子密度和其他特性,通过使用相关的许多身体波函数来明确求解高精度。在该项目中,PI将扩展QMC多体波函数方法描述具有显着电子相关性的系统中的激子和激子相关现象的能力。为此,将探索涉及两组分纺纱器的最新发展的基于轨道的波函数,以捕获涉及磁性,光学和集体电子状态的系统中的强相关性。特别是,此形式可以描述各种材料中的激子凝结。感兴趣的下一个区域涉及将QMC方法应用于二元氢化物化合物,涉及较重的元素,例如硫或YTTRUM,这些元素被推测地称为近室温度超导性,尤其是在高压下。但是,由于实验挑战,现有数据非常有限,我们对这些材料和现象的理解远非解决。该计划涉及QMC方法在这些化合物中阐明原子和电子结构,状态方程以及质子零点运动和非谐作用的作用的应用。在基本层面,旋转依赖性相互作用的最新发展使QMC的固定节点和固定相版本之间的平滑变化。这为增加变分的自由以及超出当前固定节点/相准确度限制的新可能性开放了新的可能性。目的是探索有可能将常见的固定节点/相位偏差减少几乎一个数量级的方向,为对电子电子相关性的见解开辟了新的途径和复杂的量子现象。这奖反映了NSF的法定任务,并通过评估基础的智力效果和宽阔的范围来评估支持,并以评估值得评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lubos Mitas其他文献

Weighted nodal domain averages of eigenstates for quantum Monte Carlo and beyond
  • DOI:
    10.1016/j.chemphys.2022.111483
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lubos Mitas;Abdulgani Annaberdiyev
  • 通讯作者:
    Abdulgani Annaberdiyev
My recent collaborations/QMC calculation on Cr dimer
我最近对 ​​Cr 二聚体的合作/QMC 计算
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryo Maezono;Lucas K. Wagner;Michal Bajdich;Jindrich Kolorenc;Lubos Mitas;K. Kusakabe;Ryo MAEZONO
  • 通讯作者:
    Ryo MAEZONO
Two-Site Shift Product Wave Function Renormalization Group Method Applied to Quantum Systems
应用于量子系统的二位平移积波函数重正化群方法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryo Maezono;Lucas K. Wagner;Michal Bajdich;Jindrich Kolorenc;Lubos Mitas;K. Kusakabe;Ryo MAEZONO;H. Ueda
  • 通讯作者:
    H. Ueda
Diffusion Monte Carlo study on Chromium dimer
二聚体铬的扩散蒙特卡罗研究
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryo Maezono;Lucas K. Wagner;Michal Bajdich;Jindrich Kolorenc;Lubos Mitas
  • 通讯作者:
    Lubos Mitas
A microscopic mechanism of Coulomb driven effective negative interaction for the high-temperature superconductivity
库仑驱动的高温超导有效负相互作用的微观机制
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryo Maezono;Lucas K. Wagner;Michal Bajdich;Jindrich Kolorenc;Lubos Mitas;K. Kusakabe
  • 通讯作者:
    K. Kusakabe

Lubos Mitas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lubos Mitas', 18)}}的其他基金

CDS&E: Quantum Monte Carlo Methods for Electron Correlations and Spin-Orbit Effects in Low-Dimensional Materials
CDS
  • 批准号:
    1410639
  • 财政年份:
    2014
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Petascale Simulations of Quantum Systems by Stochastic Methods: Tools and Applications
合作研究:通过随机方法对量子系统进行千万亿次模拟:工具和应用
  • 批准号:
    0904794
  • 财政年份:
    2009
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG: Quantum Monte Carlo Calculations of Deep Earth Materials
合作研究:CMG:地球深部材料的量子蒙特卡罗计算
  • 批准号:
    0530110
  • 财政年份:
    2005
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Many-Body Computational Methods for Electronic Structure of Cluster and Molecular Nanosystems
团簇和分子纳米系统电子结构的多体计算方法
  • 批准号:
    0102668
  • 财政年份:
    2001
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Continuing Grant

相似国自然基金

赴意大利参加基于量子蒙特卡洛方法处理描述物质新奇态问题研讨会
  • 批准号:
    12381240135
  • 批准年份:
    2023
  • 资助金额:
    2 万元
  • 项目类别:
    国际(地区)合作与交流项目
随机Q模型中二维随机单态相的量子蒙特卡洛研究
  • 批准号:
    12304182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强关联电子体系的行列式量子蒙特卡洛计算研究
  • 批准号:
    12274289
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
相变临界行为的对数普适性的蒙特卡洛模拟:从热力学相变到经典-量子对应
  • 批准号:
    12275002
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
半满(拓展)哈伯特模型中奇异相变的量子蒙特卡洛方法研究
  • 批准号:
    12247114
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目

相似海外基金

Ultrasonic-tagged remote interferometric flowmetry for brain activity
用于大脑活动的超声波标记远程干涉流量测量
  • 批准号:
    10731255
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
Research and cloud deployment of enhanced sampling methods in MovableType
MovableType中增强采样方法的研究和云部署
  • 批准号:
    10699159
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
RUI New Generation of AI-Augmented Quantum Monte Carlo Libraries to Guide the Search for Exotic Superfluid Phases in Cold Atoms
RUI 新一代人工智能增强量子蒙特卡罗库指导冷原子中奇异超流体相的搜索
  • 批准号:
    2207048
  • 财政年份:
    2022
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Quantum Monte Carlo studies of periodic many-body systems
周期性多体系统的量子蒙特卡罗研究
  • 批准号:
    2731113
  • 财政年份:
    2022
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Studentship
Study of novel quantum properties in low dimensional He systems using the Quantum Monte Carlo method.
使用量子蒙特卡罗方法研究低维 He 系统中的新颖量子特性。
  • 批准号:
    21K03451
  • 财政年份:
    2021
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了