Conference: Nebraska Conference for Undergraduate Women in Mathematics

会议:内布拉斯加州数学本科女性会议

基本信息

  • 批准号:
    2318072
  • 负责人:
  • 金额:
    $ 19.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The 26th Nebraska Conference for Undergraduate Women in Mathematics (NCUWM) will be hosted by the University of Nebraska-Lincoln from Jan. 26-28, 2024. The 27th and 28th iterations of the conference will take place in late January or early February in 2025 and 2026, respectively. The mission of this conference is to support undergraduate women mathematics majors who wish to attend graduate school and to help and encourage them to identify possible careers using mathematics. All undergraduates are welcome to apply, regardless of gender identity or expression, race, color, ethnicity, or national origin. NCUWM plays an important role in inspiring undergraduate participants to pursue mathematics and has a positive impact on their professional growth. The conference program includes plenary talks by prominent women mathematicians, three panel discussions, small group conversations focused on a range of topics, and undergraduate research presentations in talk and poster sessions. Various networking opportunities throughout the program connect participants with peers and role models. Held annually since 1999, the conference has grown from 53 undergraduate participants to over 250 each year. In total, more than 5,000 undergraduates have attended NCUWM in its 25-year history. In addition to professional development opportunities, participants learn cutting-edge mathematics from plenary speakers and from one another. Many attendees have conducted independent, original research projects, and the conference program includes a poster session and more than five hours of talks by undergraduate participants scheduled in parallel sessions. The three panel discussions focus on careers in mathematics, choosing a graduate program, and random bits of advice. The design of the conference centers on the research-supported assertion that developing a broad mentoring network can be incredibly important for the recruitment and retention of women in STEM fields, and results of formal evaluations have corroborated the broad impact the conference has had on its participants. The conference webpage is available at https://math.unl.edu/ncuwm/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
内布拉斯加州本科妇女数学妇女(NCUWM)的第26届会议将于2024年1月26日至28日,内布拉斯加州 - 林肯大学举行。会议的27次和28次迭代将于1月下旬或分别于1月下旬或分别于2025年2月下旬或2026年举行。这次会议的任务是支持希望上研究生院的本科女性数学专业,并鼓励他们使用数学来确定可能的职业。无论性别认同或表达,种族,肤色,种族或国籍如何,都欢迎所有本科生应用。 NCUWM在激发大学参与者追求数学并对他们的职业发展产生积极影响方面发挥着重要作用。会议计划包括著名女性数学家的全体会谈,三个小组讨论,小组对话的重点是一系列主题,以及在谈话和海报会议上的本科研究演讲。整个计划中的各种网络机会将参与者与同行和榜样联系起来。自1999年以来每年举行的会议从53名本科参与者增长到每年250多个。总共有5,000多名本科生在其25年的历史上参加了NCUWM。除了专业发展机会外,参与者还从全体演讲者和彼此学习了尖端数学。许多与会者进行了独立的原创研究项目,会议计划包括一项海报会议,并在本科参与者进行了五个多小时的会谈。这三个小组讨论的重点是数学职业,选择研究生课程以及随机建议。关于研究支持的主张的会议中心的设计,即建立广泛的指导网络对于招募和保留妇女在STEM领域中至关重要,并且正式评估的结果证实了会议对参与者的广泛影响。会议网页可在https://math.unl.edu/ncuwm/.this奖中获得,反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Zupan其他文献

Bridge trisections of knotted surfaces in $S^4$
$S^4$ 中结曲面的桥三等分
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Meier;Alexander Zupan
  • 通讯作者:
    Alexander Zupan
Bridge and pants complexities of knots
桥结和裤子结的复杂性
Genus two trisections are standard
属二三等分是标准的
  • DOI:
    10.2140/gt.2017.21.1583
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Meier;Alexander Zupan
  • 通讯作者:
    Alexander Zupan
Unexpected local minima in the width complexes for knots
结宽度复合体中出现意外的局部最小值
  • DOI:
    10.2140/agt.2011.11.1097
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Zupan
  • 通讯作者:
    Alexander Zupan
Products of Farey graphs are totally geodesic in the pants graph
Farey 图的乘积在裤子图中完全是测地线
  • DOI:
    10.1142/s1793525316500096
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Samuel J. Taylor;Alexander Zupan
  • 通讯作者:
    Alexander Zupan

Alexander Zupan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Zupan', 18)}}的其他基金

Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
  • 批准号:
    2350343
  • 财政年份:
    2024
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
Interactions of 3- and 4-Dimensional Topology
3 维和 4 维拓扑的相互作用
  • 批准号:
    2005518
  • 财政年份:
    2020
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Trisections -- New Directions in Low-Dimensional Topology
FRG:协作研究:三等分——低维拓扑的新方向
  • 批准号:
    1664578
  • 财政年份:
    2017
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1203988
  • 财政年份:
    2012
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Fellowship Award

相似海外基金

2022 International Conference on Gram Positive Pathogens
2022年革兰氏阳性病原体国际会议
  • 批准号:
    10539629
  • 财政年份:
    2022
  • 资助金额:
    $ 19.42万
  • 项目类别:
Nebraska Conference for Undergraduate Women in Mathematics
内布拉斯加州数学本科女性会议
  • 批准号:
    1912868
  • 财政年份:
    2020
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
Nebraska Conference for Undergraduate Women in Mathematics
内布拉斯加州数学本科女性会议
  • 批准号:
    1855160
  • 财政年份:
    2019
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
Nebraska Conference for Undergraduate Women in Mathematics
内布拉斯加州数学本科女性会议
  • 批准号:
    1551087
  • 财政年份:
    2016
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
International Conference on Grampositive Pathogens
国际革兰氏阳性病原体会议
  • 批准号:
    8785549
  • 财政年份:
    2014
  • 资助金额:
    $ 19.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了