III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
基本信息
- 批准号:2321504
- 负责人:
- 金额:$ 59.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Inspired by the success of foundation language models in applications such as ChatGPT, one can envision the far-reaching impacts that can be brought by a pre-trained Foundation Graph Learning Model (FGLM) with broader applications in the areas such as scientific research, social network analysis, anomaly detection, drug discovery, and e-commerce. Despite the significant progress of pre-trained graph neural networks, there has not yet a FGLM that can achieve desired performance on various graph-learning-related tasks. To bridge this gap, the goal of this project is to design and develop a new machine-learning paradigm (techniques, methods, and models) towards effective yet efficient FGLMs, which will help researchers and practitioners advance their work in a wide range of real-world applications driven by the prevalent graph-structured data, thus helping to enhance national safety, public health, and welfare. The project outcomes (such as open-source code, benchmark data, and models) will be made publicly accessible and be broadly distributed through demos, publications, media presentations, and the like. This project will integrate research with education, including novel curriculum development, student mentoring, professional training and workforce development, and K-12 outreach activities aimed at women and underrepresented groups.By developing a new machine-learning paradigm to jointly solve the multi-task, cross-graph, and cross-domain challenges in graph learning at the first attempt, this project includes three interconnected research components towards effective yet efficient FGLMs. First, to realize the strong and consistent task-generalization ability for FGLMs in an effective yet affordable way, given a graph, the team will design and develop a new multi-task self-supervised graph learning framework with a novel multi-gradient descent optimization algorithm coupled with adaptive data augmentation to learn each task equitably well. Second, as real-world graphs are always incomplete, to learn comprehensive knowledge for a specific domain, the team will develop a new multi-graph co-training framework, specifically a variational expectation-maximization framework with relational knowledge distillation, to jointly train the generated graphs in an effective yet efficient manner while tackling the challenge of diversified node attributes of different graphs. Third, to further enable cross-domain knowledge transfer for pre-trained FGLMs, the team will develop mixture-of-expert based meta-learning techniques to characterize the latent properties of graphs from different domains and adaptively utilize the knowledge learned from existing domains to infer on a rarely seen or unseen domain. The new machine-learning paradigm developed in this project will accelerate the development in the rapidly evolving area of pre-trained graph neural networks, advance the field of information integration and informatics, and help researchers and practitioners in different domains to advance their work in a variety of real-world applications driven by the ubiquitous graph data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
受ChatGPT等应用程序中基础语言模型的成功启发,可以想象预先训练的基础图学习模型(FGLM)可以带来深远的影响,在科学研究,社交网络分析,异常检测,药物发现和电子商务等领域具有更广泛的应用。尽管预训练的图神经网络取得了重大进展,但还没有一个FGLM可以在各种图学习相关的任务上实现所需的性能。为了弥合这一差距,该项目的目标是设计和开发一种新的机器学习范式(技术,方法和模型),以实现有效而高效的FGLM,这将有助于研究人员和从业人员在由流行的图结构数据驱动的广泛的现实世界应用中推进他们的工作,从而有助于提高国家安全,公共卫生和福利。项目成果(如开源代码、基准数据和模型)将通过演示、出版物、媒体演示等方式向公众开放并广泛传播。该项目将研究与教育相结合,包括新颖的课程开发,学生辅导,专业培训和劳动力发展,以及针对女性和代表性不足的群体的K-12外展活动。通过开发新的机器学习范式,首次尝试共同解决图学习中的多任务,跨图和跨领域挑战,该项目包括三个相互关联的研究组成部分,以实现有效而高效的FGLMs。首先,为了以一种有效而经济的方式实现FGLM强大而一致的任务泛化能力,给定一个图,该团队将设计和开发一个新的多任务自监督图学习框架,该框架具有一种新的多梯度下降优化算法,再加上自适应数据增强,以公平地学习每个任务。其次,由于现实世界的图总是不完整的,为了学习特定领域的综合知识,团队将开发一个新的多图协同训练框架,特别是具有关系知识蒸馏的变分期望最大化框架,以有效而高效的方式联合训练生成的图,同时应对不同图的多样化节点属性的挑战。第三,为了进一步实现预先训练的FGLM的跨领域知识转移,该团队将开发基于专家混合的元学习技术,以表征来自不同领域的图的潜在属性,并自适应地利用从现有领域学到的知识来推断一个罕见或未知的领域。该项目开发的新机器学习范式将加速预训练图神经网络快速发展领域的发展,推进信息集成和信息学领域,并帮助不同领域的研究人员和从业人员在各种真实的-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanfang Ye其他文献
Classifying construction site photos for roof detection
对施工现场照片进行分类以进行屋顶检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Madhuri Siddula;F. Dai;Yanfang Ye;Jianping Fan - 通讯作者:
Jianping Fan
Efficacy and safety of cadonilimab (PD-1/CTLA-4 bispecific) in combination with chemotherapy in anti-PD-1-resistant recurrent or metastatic nasopharyngeal carcinoma: a single-arm, open-label, phase 2 trial
- DOI:
10.1186/s12916-025-03985-4 - 发表时间:
2025-03-11 - 期刊:
- 影响因子:8.300
- 作者:
Yaofei Jiang;Weixin Bei;Lin Wang;Nian Lu;Cheng Xu;Hu Liang;Liangru Ke;Yanfang Ye;Shuiqing He;Shuhui Dong;Qin Liu;Chuanrun Zhang;Xuguang Wang;Weixiong Xia;Chong Zhao;Ying Huang;Yanqun Xiang;Guoying Liu - 通讯作者:
Guoying Liu
THERMO-SENSITIVE SPIKELET DEFECTS 1 acclimatizes rice spikelet initiation and development to high temperature
热敏小穗缺陷 1 使水稻小穗的萌生和发育适应高温
- DOI:
10.1093/plphys/kiac576 - 发表时间:
2023 - 期刊:
- 影响因子:7.4
- 作者:
Zhengzheng Cai;Gang Wang;Jieqiong Li;Lan Kong;Weiqi Tang;Xuequn Chen;Xiaojie Qu;Chenchen Lin;Yulin Peng;Yang Liu;Zhanlin Deng;Yanfang Ye;Weiren Wu;Yuanlin Duan - 通讯作者:
Yuanlin Duan
ISMCS: An intelligent instruction sequence based malware categorization system
ISMCS:基于智能指令序列的恶意软件分类系统
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kaiming Huang;Yanfang Ye;Qinshan Jiang - 通讯作者:
Qinshan Jiang
Survival neural networks for time-to-event prediction in longitudinal study
用于纵向研究中事件发生时间预测的生存神经网络
- DOI:
10.1007/s10115-020-01472-1 - 发表时间:
2020-05 - 期刊:
- 影响因子:2.7
- 作者:
张健飞;陈黎飞;Yanfang Ye;郭躬德;Rongbo Chen;Alain Vanasse;王声瑞 - 通讯作者:
王声瑞
Yanfang Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanfang Ye', 18)}}的其他基金
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
- 批准号:
2334193 - 财政年份:2023
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
- 批准号:
2146076 - 财政年份:2022
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
- 批准号:
2203261 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
- 批准号:
2209814 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
- 批准号:
2214376 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2217239 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
- 批准号:
2218762 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2203262 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2107172 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2140785 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
相似国自然基金
基于中医临床证候特点构建非小细胞肺癌新辅助化疗联合免疫治疗后病理学缓解多维预测模型的研究与应用
- 批准号:2025JJ90007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
缩小发明专利省际差距 壮大专精特新“小巨人”企业群体 强化企业科技创新主体地位的思路与对策
- 批准号:2025C25040
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新辅助化疗+免疫治疗联合立体定向放疗治疗可切除局部晚期非小细胞肺癌的单臂Ⅱ期临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
靶向肠道腺瘤癌变新靶点ABHD5的新结构小分子调节剂设计、合成与药效 评价研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多模态 MRI 生境影像组学预测非小细胞肺癌新辅助免
疫治疗响应性的研究
- 批准号:2024JJ9587
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
单细胞联合空间转录组学揭示新的小细胞样前列腺癌亚型及其潜在治疗方案
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
多模态时序图像评估非小细胞肺癌新辅助免疫治疗获益的研究
- 批准号:24ZR1459900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
一种新的VEGF和TNF信号双效抑制剂及其抗血管瘤效应
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多时序CT影像与病理WSI的非小细胞肺癌新辅助免疫治疗疗效预测研究
- 批准号:82360356
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于人工智能的药物小分子-新靶点计算分析方法研究
- 批准号:2023JJ30264
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
新規3次元イメージングによる腎がんの微小脈管および3次リンパ様構造(TLS)の解析
使用新型 3D 成像分析肾癌的微血管和三级淋巴结构 (TLS)
- 批准号:
24K10294 - 财政年份:2024
- 资助金额:
$ 59.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
3次元培養技術を用いた口腔がん微小環境モデルの構築と新規治療標的の探索
利用3D培养技术构建口腔癌微环境模型并寻找新的治疗靶点
- 批准号:
23K16143 - 财政年份:2023
- 资助金额:
$ 59.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
がん微小環境におけるDKK1/3-CKAP4シグナルの機能解明と新規治療法の開発
阐明DKK1/3-CKAP4信号在癌症微环境中的功能并开发新的治疗方法
- 批准号:
22K15511 - 财政年份:2022
- 资助金额:
$ 59.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
新規3次元イメージングによる腎がん微小脈管の異質性解析
使用新型 3D 成像对肾癌微血管进行异质性分析
- 批准号:
21K07156 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
III: Small: Towards the Foundations of Training Deep Neural Networks: New Theory and Algorithms
III:小:迈向训练深度神经网络的基础:新理论和算法
- 批准号:
2008981 - 财政年份:2020
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
The effects of omega-3 fatty acids on the mechanism of brain injury mediated through the combination between temporal immune cells and brain microvascular cells
omega-3脂肪酸对颞叶免疫细胞与脑微血管细胞结合介导的脑损伤机制的影响
- 批准号:
19K09388 - 财政年份:2019
- 资助金额:
$ 59.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of new therapeutic strateg for pancreatic cancer targeting protein tyrosine phosphatase non-receptor type 3 (PTPN3)
开发针对蛋白酪氨酸磷酸酶非受体3型(PTPN3)的胰腺癌新治疗策略
- 批准号:
19K09124 - 财政年份:2019
- 资助金额:
$ 59.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a new therapeutic strategy regulated Treg cells targeting protein tyrosine phosphatase non-receptor type 3 (PTPN3)
开发针对蛋白酪氨酸磷酸酶非受体 3 (PTPN3) 的 Treg 细胞新治疗策略
- 批准号:
19K09047 - 财政年份:2019
- 资助金额:
$ 59.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
III: Small: New algorithms for genome skimming and its applications
III:小:基因组略读的新算法及其应用
- 批准号:
1815485 - 财政年份:2018
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
III: Small: A New Machine Learning Approach for Improved Entity Identification
III:小:改进实体识别的新机器学习方法
- 批准号:
1815538 - 财政年份:2018
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant