III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models

III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型

基本信息

  • 批准号:
    2321504
  • 负责人:
  • 金额:
    $ 59.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Inspired by the success of foundation language models in applications such as ChatGPT, one can envision the far-reaching impacts that can be brought by a pre-trained Foundation Graph Learning Model (FGLM) with broader applications in the areas such as scientific research, social network analysis, anomaly detection, drug discovery, and e-commerce. Despite the significant progress of pre-trained graph neural networks, there has not yet a FGLM that can achieve desired performance on various graph-learning-related tasks. To bridge this gap, the goal of this project is to design and develop a new machine-learning paradigm (techniques, methods, and models) towards effective yet efficient FGLMs, which will help researchers and practitioners advance their work in a wide range of real-world applications driven by the prevalent graph-structured data, thus helping to enhance national safety, public health, and welfare. The project outcomes (such as open-source code, benchmark data, and models) will be made publicly accessible and be broadly distributed through demos, publications, media presentations, and the like. This project will integrate research with education, including novel curriculum development, student mentoring, professional training and workforce development, and K-12 outreach activities aimed at women and underrepresented groups.By developing a new machine-learning paradigm to jointly solve the multi-task, cross-graph, and cross-domain challenges in graph learning at the first attempt, this project includes three interconnected research components towards effective yet efficient FGLMs. First, to realize the strong and consistent task-generalization ability for FGLMs in an effective yet affordable way, given a graph, the team will design and develop a new multi-task self-supervised graph learning framework with a novel multi-gradient descent optimization algorithm coupled with adaptive data augmentation to learn each task equitably well. Second, as real-world graphs are always incomplete, to learn comprehensive knowledge for a specific domain, the team will develop a new multi-graph co-training framework, specifically a variational expectation-maximization framework with relational knowledge distillation, to jointly train the generated graphs in an effective yet efficient manner while tackling the challenge of diversified node attributes of different graphs. Third, to further enable cross-domain knowledge transfer for pre-trained FGLMs, the team will develop mixture-of-expert based meta-learning techniques to characterize the latent properties of graphs from different domains and adaptively utilize the knowledge learned from existing domains to infer on a rarely seen or unseen domain. The new machine-learning paradigm developed in this project will accelerate the development in the rapidly evolving area of pre-trained graph neural networks, advance the field of information integration and informatics, and help researchers and practitioners in different domains to advance their work in a variety of real-world applications driven by the ubiquitous graph data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
受基础语言模型在诸如CHATGPT等应用程序中的成功的启发,人们可以设想预先训练的基础图形学习模型(FGLM)可以带来的深远影响,并在科学研究,社交网络分析,异常检测,药物发现和电子商务等领域具有更广泛的应用。尽管预先训练的图神经网络取得了重大进展,但尚未在各种与图形学习相关的任务上实现所需性能的FGLM。为了弥合这一差距,该项目的目标是设计和开发新的机器学习范式(技术,方法和模型)朝着有效但有效的FGLMS朝着高效而有效的FGLM,这将有助于研究人员和从业人员在广泛的图形结构数据中驱动的广泛的现实应用程序中推进他们的工作,从而有助于增强国家安全,公共卫生,公共卫生,保健,并提供公共卫生,努力,并提供全国性的保健,并提供全国安全。项目结果(例如开源代码,基准数据和模型)将被公开访问,并通过演示,出版物,媒体演示等广泛分发。该项目将与教育相结合,包括新的课程发展,学生指导,专业培训和劳动力发展以及针对女性和代表性不足的小组的K-12外展活动。开发一个新的机器学习范式以共同解决了第一次尝试的互联网研究,在第一次尝试中,在第一次尝试中,将多任务,交叉杂志和跨案例挑战挑战,包括三个Intersconnement componnect for for componnement compons componnect componnect componnef compyn for for componnectn comment for componnef for componnef for componnef。首先,为了以有效但负担得起的方式实现FGLM的强大而一致的任务将来,鉴于图,团队将使用新型的多任务自我监督的图形学习框架来设计和开发新型的多层次下降下降量优化算法,并与适应性数据增强相结合,以学习每个任务。其次,由于现实世界图总是不完整的,要了解特定领域的全面知识,团队将开发一个新的多画图共同训练框架,尤其是一个具有关系知识蒸馏的各种期望最大化的框架,以有效但有效的方式共同训练生成的图形,同时又可以解决不同图表的不同图表的挑战。第三,为了进一步为预训练的FGLM提供跨域知识传递,该团队将开发基于专家的元学习技术的混合物,以表征来自不同域的图形的潜在特性,并自适应地利用从现有域中学到的知识来推断出很少见到或看不见的域。该项目中开发的新机器学习范式将加速预先训练的图形神经网络快速发展的领域的发展,推进信息集成和信息学领域,并帮助不同领域的研究人员和实践者在各种现实的应用中推动其在各种真实的应用中推动其在ubiquitos dection dection dection dection dection dectif的现实应用中推动其工作的工作。基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanfang Ye其他文献

Classifying construction site photos for roof detection
对施工现场照片进行分类以进行屋顶检测
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Madhuri Siddula;F. Dai;Yanfang Ye;Jianping Fan
  • 通讯作者:
    Jianping Fan
THERMO-SENSITIVE SPIKELET DEFECTS 1 acclimatizes rice spikelet initiation and development to high temperature
热敏小穗缺陷 1 使水稻小穗的萌生和发育适应高温
  • DOI:
    10.1093/plphys/kiac576
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Zhengzheng Cai;Gang Wang;Jieqiong Li;Lan Kong;Weiqi Tang;Xuequn Chen;Xiaojie Qu;Chenchen Lin;Yulin Peng;Yang Liu;Zhanlin Deng;Yanfang Ye;Weiren Wu;Yuanlin Duan
  • 通讯作者:
    Yuanlin Duan
ISMCS: An intelligent instruction sequence based malware categorization system
ISMCS:基于智能指令序列的恶意软件分类系统
Survival neural networks for time-to-event prediction in longitudinal study
用于纵向研究中事件发生时间预测的生存神经网络
  • DOI:
    10.1007/s10115-020-01472-1
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    张健飞;陈黎飞;Yanfang Ye;郭躬德;Rongbo Chen;Alain Vanasse;王声瑞
  • 通讯作者:
    王声瑞
Soter: Smart Bracelets for Children's Safety
Soter:保护儿童安全的智能手环

Yanfang Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanfang Ye', 18)}}的其他基金

EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
  • 批准号:
    2334193
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
  • 批准号:
    2146076
  • 财政年份:
    2022
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
  • 批准号:
    2203261
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Continuing Grant
EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
  • 批准号:
    2209814
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
  • 批准号:
    2214376
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
  • 批准号:
    2217239
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
  • 批准号:
    2218762
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
  • 批准号:
    2107172
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Continuing Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
  • 批准号:
    2203262
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
  • 批准号:
    2140785
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多时序CT影像与病理WSI的非小细胞肺癌新辅助免疫治疗疗效预测研究
  • 批准号:
    82360356
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
PHLDA3通过ALDH1A1调控非小细胞肺癌干性促进新辅助化疗耐药的作用和机制研究
  • 批准号:
    82302950
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于免疫多肽组学对小细胞肺癌新靶点STMN1抗原表位的解析及在TCR-T治疗中的应用研究
  • 批准号:
    82303772
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AMPK信号传递介导加州新小绥螨对高温适应的调控机制
  • 批准号:
    32302425
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于影像组学术前预测可切除非小细胞肺癌新辅助免疫治疗疗效的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimizing the synthesis of[18F]FTMP for commercial distribution
优化 [18F]FTMP 的合成以进行商业分销
  • 批准号:
    10601199
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
Mitochondrial complex III-derived ROS in astrocytic signaling and Alzheimer's disease-related pathogenesis
线粒体复合物 III 衍生的 ROS 在星形胶质细胞信号传导和阿尔茨海默病相关发病机制中的作用
  • 批准号:
    10749159
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
Receptor-Targeted Fluorescence-Guided Surgery in Pancreatic Neuroendocrine Tumors
胰腺神经内分泌肿瘤受体靶向荧光引导手术
  • 批准号:
    10522096
  • 财政年份:
    2022
  • 资助金额:
    $ 59.96万
  • 项目类别:
Characterization of assembly and activation of the Shigella type III secretion injectisome
III 型志贺氏菌分泌注射剂的组装和激活的表征
  • 批准号:
    10535257
  • 财政年份:
    2022
  • 资助金额:
    $ 59.96万
  • 项目类别:
Modulation of cancer induced immune suppression via inhibition of SCD1
通过抑制 SCD1 调节癌症诱导的免疫抑制
  • 批准号:
    10896572
  • 财政年份:
    2022
  • 资助金额:
    $ 59.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了