IMR: MT: xGTracker -- Mobile xG Performance Monitoring and Data Collection Platform to Enable Large-Scale Crowd-Sourced Measurement
IMR:MT:xGTracker——移动 xG 性能监控和数据收集平台,支持大规模众包测量
基本信息
- 批准号:2323174
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Commercial 5G networks are becoming more widely available. Their key advantage is much higher speeds, enabling emerging applications such as multimedia streaming, VR/AR (virtual reality/augmented reality), and autonomous vehicles, to name a few. Measuring the performance of these networks and emerging applications becomes important to understand how they function and to identify areas of improvement especially for designing the next generation of such technologies. This collaborative project brings together investigators from the University of Michigan and University of Minnesota to create a platform for measuring the performance of 5G, 6G, (i.e., xG) networks and show the changes over time along with the performance of the emerging applications. xGTracker is modular, extensible, configurable, cross-technology, and application-centric measurement platform. First, xGTracker has several configurable components and enables researchers to add/replace components. It is capable of selecting available radio bands/technologies to conduct measurements. Second, xGTracker will integrate existing real open-source applications as well as generating different workloads to emulate others for collecting application Quality of Experience metrics. Third, xGTracker allows for dynamic server selection based on several parameters such as (location, carrier, and workload). This helps understand the impact of server location on the collected metrics. Fourth, XGTracker will report energy consumption for different system/device components which enables monitoring the energy consumption for emerging applications. Finally, xGTracker fully considers user privacy allowing users to choose what and how to share their data.The broader impact of the project has multiple dimensions. First, xGTracker provides tools that measure and characterize the performance of commercial xG networks. This will benefit xG customers, application developers, and xG carriers. XGTracker has the potential to be integrated with industrial collaborators improving the quality of experience for hundreds of millions of xG users in the future. Second, xGTracker presents an opportunity to integrate research and education. It will contribute new content to networking and mobile courses taught and help design various course projects. xGTracker will also be used to show 5G technology to students especially from underrepresented groups and simulate their interest in STEM. The repository for the xGTracker Platform is at https://github.com/xGTracker-Platform. The project is expected to be open-source under a BSD-style permissive free software license for other researchers to contribute to it and add new features. The data collected through the xGTracker platform will then be made available through different performance maps to show the performance of the different technologies over time as well as the quality of experience for different applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
商业5G网络正在变得越来越广泛。他们的主要优势是更高的速度,可以实现多媒体流媒体,VR/AR(虚拟现实/增强现实)和自动驾驶汽车等新兴应用程序。测量这些网络和新兴应用程序的性能对于了解它们的功能和确定改进领域,尤其是在设计下一代技术的领域变得很重要。这个合作项目汇集了密歇根大学和明尼苏达大学的调查人员,以创建一个平台,用于衡量5G,6G,(即XG)网络的性能,并显示随时间的变化以及新兴应用程序的性能。 XGTRACKER是模块化,可扩展,可配置,跨技术和以应用程序为中心的测量平台。首先,XGTracker具有几个可配置的组件,并使研究人员可以添加/替换组件。它能够选择可用的无线电频段/技术来进行测量。其次,XGTracker将集成现有的实际开源应用程序,并生成不同的工作负载,以模拟其他工作,以收集经验指标的应用质量。第三,XGTRACKER允许基于多个参数(例如(位置,载体和工作负载))进行动态服务器选择。这有助于了解服务器位置对收集的指标的影响。第四,XGTracker将报告不同系统/设备组件的能源消耗,该组件能够监视新兴应用程序的能源消耗。最后,XGTracker完全考虑了用户隐私,允许用户选择什么以及如何共享其数据。项目的广泛影响具有多个维度。首先,XGTracker提供了衡量和表征商业XG网络性能的工具。这将使XG客户,应用程序开发人员和XG运营商受益。 Xgtracker有可能与工业合作者集成,从而提高了未来数亿XG用户的经验质量。其次,Xgtracker为整合研究和教育提供了机会。它将为教授的网络和移动课程提供新的内容,并帮助设计各种课程项目。 Xgtracker还将用于向学生展示5G技术,尤其是来自代表性不足的群体,并模拟他们对STEM的兴趣。 XGTracker平台的存储库位于https://github.com/xgtracker-platform。预计该项目将根据BSD风格的允许自由软件许可开源,供其他研究人员为其做出贡献并添加新功能。然后,通过XGTracker平台收集的数据将通过不同的性能图提供,以展示随着时间的流逝的不同技术的性能以及不同应用程序的经验质量。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhuoqing Mao其他文献
Zhuoqing Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhuoqing Mao', 18)}}的其他基金
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321532 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CPS: Medium: Collaborative Research: Transforming Connected and Automated Transportation with Smart Networking, Cooperative Sensing, and Edge Computing
CPS:中:协作研究:通过智能网络、协作传感和边缘计算改变互联和自动化交通
- 批准号:
2038215 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SBIR Phase I: Automated Safety/Security Compliance Verification and Enforcement for Autonomous Vehicle Software
SBIR 第一阶段:自动驾驶汽车软件的安全/安保合规性验证和执行
- 批准号:
2015019 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SaTC: TTP: Medium: Collaborative: Exposing and Mitigating Security/Safety Concerns of CAVs: A Holistic and Realistic Security Testing Platform for Emerging CAVs
SaTC:TTP:媒介:协作:暴露和减轻 CAV 的安全/安全问题:针对新兴 CAV 的全面且现实的安全测试平台
- 批准号:
1930041 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CI-SUSTAIN: Collaborative Research: Sustaining Successful Smartphone Testbeds to Enable Diverse Mobile Experiments
CI-SUSTAIN:协作研究:维持成功的智能手机测试平台以实现多样化的移动实验
- 批准号:
1629763 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Enabling Scalable Cloud And Edge-device Integration Using Cross-layer Parallelism
XPS:完整:协作研究:使用跨层并行性实现可扩展的云和边缘设备集成
- 批准号:
1628991 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
TWC: TTP Option: Small: Differential Introspective Side Channels --- Discovery, Analysis, and Defense
TWC:TTP 选项:小:差异内省侧通道 --- 发现、分析和防御
- 批准号:
1526455 - 财政年份:2015
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
EAGER: Cybermanufacturing: Enabling Production as a Service (PaaS)
EAGER:网络制造:实现生产即服务 (PaaS)
- 批准号:
1546036 - 财政年份:2015
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
NSF Workshop on Mobile Community Infrastructure
NSF 移动社区基础设施研讨会
- 批准号:
1455719 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
FIA-NP: Collaborative Research: The Next-Phase MobilityFirst Project - From Architecture and Protocol Design to Advanced Services and Trial Deployments
FIA-NP:协作研究:下一阶段 MobilityFirst 项目 - 从架构和协议设计到高级服务和试验部署
- 批准号:
1345226 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Cooperative Agreement
相似国自然基金
金属硫蛋白MT3通过锌稳态促进GPX4表达抑制平滑肌细胞铁死亡和主动脉夹层的机制研究
- 批准号:82300551
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SNORA14A/MT2A抗氧化轴失调介导Activin-A表达增加促进肝母细胞瘤进展的机制及临床价值研究
- 批准号:82302615
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MT2A调控的髓核细胞铁死亡途径在椎间盘退变中的作用及机制研究
- 批准号:82302741
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
转录因子c-Myb通过增强MT-ND1/4/5转录介导急性髓系白血病代谢异质性的分子机制研究
- 批准号:82360030
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
巨噬细胞通过NAMPT-ITGA5/ITGB1通路诱导瓣膜内皮细胞Endo-MT调控主动脉瓣膜钙化机制研究
- 批准号:82300417
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
IMR: MT: Tools for Measuring Route Origin Validation in Resource Public Key Infrastructure (RPKI) at Scale
IMR:MT:用于大规模测量资源公钥基础设施 (RPKI) 中的路由源验证的工具
- 批准号:
2323137 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Multi-Track Post-Baccalaureate Research Education Program (MT PREP)
多轨学士后研究教育计划 (MT PREP)
- 批准号:
10556791 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
NSF Engines Development Award: Advancing precision forestry and rangeland technologies (MT, ID, ND, SD, WA, WY)
NSF 引擎开发奖:推进精准林业和牧场技术(MT、爱达荷州、北达科他州、南达科他州、华盛顿州、怀俄明州)
- 批准号:
2305683 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Cooperative Agreement
IMR:MT: Internet Routing Experiments for the Cloud Era
IMR:MT:云时代的互联网路由实验
- 批准号:
2323307 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Cortical processing of three-dimensional object-motion
三维物体运动的皮层处理
- 批准号:
10638729 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别: