LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales

LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性

基本信息

项目摘要

Many ecosystems are exhibiting increased variability as a result of human activities. This environmental variability poses substantial challenges for managers and decision-makers, who can no longer use historical baselines to guide predictions of future ecosystem conditions. Consequently, advancing the capacity to predict the future for a range of physical, chemical, and biological ecosystem variables that influence water quality is paramount for improving resource management. In response to this need, this Long Term Research in Environmental Biology (LTREB) project will support a field monitoring and data-sharing program at two drinking water supply reservoirs. The ecosystem data that will be collected (which will include water temperature, clarity, chemistry, and phytoplankton, among other variables) will be used to generate and evaluate real-time forecasts (predictions of future ecosystem conditions, and the uncertainty associated with them) at daily to annual scales. Forecasting is a powerful approach for quantifying ecological predictability, as it requires using models that represent our best hypotheses about how ecosystems function to predict ecological conditions into the future. Iteratively evaluating these forecasts as new data are collected will reveal which models perform best in different environmental conditions and identify how far into the future different variables can be accurately predicted, from one day to one decade in advance. This project will enable the testing of fundamental hypotheses about the predictability of ecosystems; develop novel workflows for integrating environmental observations into real-time forecasting and data publishing; and broaden the participation of students from underrepresented groups in environmental data science. Moreover, all forecasts will be disseminated to water utilities in real time, enabling their immediate use as decision-making tools for water management. This LTREB project will represent one of the first systematic analyses of the predictability of ecosystem dynamics, thereby providing valuable information on the gradients and controls of predictability between contrasting ecosystems and among ecosystem variables. Importantly, researchers will be able to compare the performance of different forecast models with competing representations of ecosystem dynamics (e.g., varying driver variables, model structures) to test ecological hypotheses about predictability and examine the controls on ecosystem function. For example, forecast accuracy will be compared between two reservoirs that are similar in all characteristics except for oxygen availability to determine how anoxia, which is increasing in waterbodies globally, alters predictability. In addition, this LTREB project will develop novel FAIR (Findable, Accessible, Interoperable, Reusable) data-publishing workflows in collaboration with the Environmental Data Initiative (EDI) that advance reproducibility in ecology, support environmental data science education, and enable the scaling of ecological forecasting to other sites. Altogether, this project will result in data products for water reservoir physical, chemical, and biological ecosystem variables available in real-time for automated forecasting; a suite of different forecasting models and evaluated forecasts; forecasting and data-publishing workflows and software; and most critically, substantial ecosystem knowledge gained about the predictability of reservoir dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于人类活动的结果,许多生态系统表现出增加的变异性。这种环境变异性对经理和决策者构成了重大挑战,他们无法再使用历史基准来指导对未来生态系统条件的预测。因此,促进预测一系列影响水质的物理,化学和生物生态系统变量的能力对于改善资源管理至关重要。为了应对这一需求,这项在环境生物学(LTREB)项目中的长期研究将支持两个饮用水供应库的现场监测和数据共享计划。将使用将收集的生态系统数据(包括水温,清晰度,化学和浮游植物等变量)将在每天到年度量表生成和评估实时预测(对未来生态系统条件的预测以及与之相关的不确定性)。预测是一种量化生态可预测性的有力方法,因为它需要使用代表我们关于生态系统如何运作以预测未来生态条件的最佳假设的模型。迭代评估这些预测,因为收集了新数据将揭示哪些模型在不同的环境条件下表现最佳,并确定未来的距离可以准确预测到未来的多远,从一天到十年。该项目将对生态系统的可预测性进行基本假设的测试;开发新颖的工作流程,将环境观察结果整合到实时预测和数据发布中;并扩大了代表性不足小组的学生参与环境数据科学。此外,所有预测都将实时传播到水公用事业,从而可以立即用作水管理的决策工具。该LTREB项目将代表生态系统动力学可预测性的首次系统分析之一,从而提供有关对比生态系统和生态系统变量之间可预测性的有价值信息。重要的是,研究人员将能够将不同预测模型的性能与生态系统动力学的竞争表示(例如,不同的驱动器变量,模型结构)进行比较,以测试有关可预测性的生态假设并检查对生态系统功能的控制。例如,除了氧气可用性以确定全球水体增加的缺氧是如何改变可预测性的两个氧化储层之间的预测精度,这些储层的精度将在所有特征上相似。此外,该LTREB项目将与环境数据计划(EDI)合作开发新颖的公平(可访问,可互操作,可重复使用,可重复使用的)数据出版工作流,这些工作流程(EDI)提高了生态学的可重复性,支持环境数据科学教育,并启用对其他站点的生态预测的扩展。总的来说,该项目将为水库物理,化学和生物生态系统变量实时可用于自动化预测,从而为水库物理,化学和生物生态系统变量提供数据产品;一套不同的预测模型,并评估了预测;预测和数据出版工作流和软件;而且,最重要的是,关于储层动力学的可预测性获得的实质性生态系统知识。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响评估标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cayelan Carey其他文献

Cayelan Carey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cayelan Carey', 18)}}的其他基金

Global Centers Track 2: Building the Global Center for Forecasting Freshwater Futures
全球中心轨道 2:建立全球淡水未来预测中心
  • 批准号:
    2330211
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
  • 批准号:
    2318861
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: EdgeVPN: Seamless Secure VirtualNetworking for Edge and Fog Computing
协作研究:要素:EdgeVPN:用于边缘和雾计算的无缝安全虚拟网络
  • 批准号:
    2004323
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
MSA: Macrosystems EDDIE: An undergraduate training program in macrosystems science and ecological forecasting
MSA:宏观系统 EDDIE:宏观系统科学和生态预测的本科培训项目
  • 批准号:
    1926050
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CIBR: Cyberinfrastructure Enabling End-to-End Workflows for Aquatic Ecosystem Forecasting
合作研究:CIBR:网络基础设施支持水生生态系统预测的端到端工作流程
  • 批准号:
    1933016
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Consequences of changing oxygen availability for carbon cycling in freshwater ecosystems
合作研究:改变淡水生态系统中碳循环的氧气可用性的后果
  • 批准号:
    1753639
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SCC-IRG Track 2: Resilient Water Systems: Integrating Environmental Sensor Networks and Real-Time Forecasting to Adaptively Manage Drinking Water Quality and Build Social Trust
SCC-IRG 第 2 轨道:弹性水系统:集成环境传感器网络和实时预测,自适应管理饮用水质量并建立社会信任
  • 批准号:
    1737424
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
MSB-ECA: A macrosystems science training program: developing undergraduates' simulation modeling, distributed computing, and collaborative skills
MSB-ECA:宏观系统科学培训计划:培养本科生的仿真建模、分布式计算和协作技能
  • 批准号:
    1702506
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Hypoxia-induced trade-offs on zooplankton vertical distribution and community structure in freshwaters
论文研究:缺氧引起的淡水浮游动物垂直分布和群落结构的权衡
  • 批准号:
    1601061
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

考虑参照依赖消费者的在线零售商信息与退货策略及其整合机制研究
  • 批准号:
    72302176
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海洋来源二倍半萜MHO7靶向整合素β8/TGF-β轴调控EMT抑制三阴性乳腺癌转移的作用机制研究
  • 批准号:
    82304550
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
  • 批准号:
    32371472
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
DRGs驱动价值医疗背景下的医疗资源整合机制与优化策略研究
  • 批准号:
    72372170
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
多孔PEEK搭载CuCe纳米酶/柠康酸时序性调控线粒体代谢促进免疫化骨整合的机制研究
  • 批准号:
    82302669
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
  • 批准号:
    10100967
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
CAREER: Integrating brain-behavior evolution with real-world science impacts through neuroscience of working dogs
职业:通过工作犬的神经科学将大脑行为进化与现实世界的科学影响相结合
  • 批准号:
    2238071
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CRII: CNS: Integrating Security Tasks into Multicore Real-Time Systems
CRII:CNS:将安全任务集成到多核实时系统中
  • 批准号:
    2312006
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Advanced study of the atmospheric flow Integrating REal climate conditions to enhance wind farm and wind turbine power production and increase components durability
大气流动的高级研究结合真实的气候条件,以提高风电场和风力涡轮机的发电量并提高部件的耐用性
  • 批准号:
    10039246
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
Integrating real-time clinical activity and behavioral responses for characterizing cognitive load and errors (IGNITE)
整合实时临床活动和行为反应来表征认知负荷和错误(IGNITE)
  • 批准号:
    10504867
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了