Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
基本信息
- 批准号:2335801
- 负责人:
- 金额:$ 11.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by responding to the call to address the grand challenge of advancing personalized learning (National Academy of Engineering). This research and development (R&D) project will embark on a comprehensive conceptual replication and adaption effort to examine the degree to which prior knowledge, in the form of pre-class adaptive learning platform (APL) lessons/learning modules, is associated with student affective and cognitive outcomes in blended active learning classrooms. In a blended active learning classroom, students are expected to prepare before class, for example, by reviewing prior knowledge using videos and online assessments. Five engineering core courses taught at the sophomore and junior levels will serve as classroom settings for testing adaptive learning. This testing will be done by comparing "one-size-fits-all" pre-class activities delivered via the Learning Management System (LMS) with adaptive and flexible pre-class lessons delivered via an adaptive learning platform (ALP). Courses include Statistical Testing and Regression, Linear Circuits and Systems, Fluid Systems, Engineering Fluid Mechanics, and Computational Methods. A set of published assessments, including concept inventories, will be administered to compare students' cognitive and affective outcomes in the LMS and ALP environments. This R&D project will be used to (1) develop, improve, and deploy ALP lessons as well as the comparative LMS content in addition to in-class and post-class exercises for five courses at three institutions; (2) compare cognitive outcomes (i.e., conceptual, procedural, and higher-order problem-solving) and affective outcomes (cognitive engagement and academic motivation) with adaptive learning (experimental) vs. without adaptive learning (control) for blended classroom preparation; (3) analyze ALP analytics/metrics to study student learning behaviors (such as time spent on pre-class preparation, number of quiz attempts, and early completion counts) and their relationship to the outcomes; and (4) communicate findings and best practices via open educational materials, journal/conference articles, social media, websites, and faculty workshops. The development and research effort will be conducted through a collaboration of engineering and engineering education faculty and researchers at three institutions: the University of South Florida, the University of Central Florida, and the University of Pittsburgh. The investigation will focus on the role and association of prior knowledge (as fostered by student participation in pre-class activities and differential levels of student preparedness) with students' cognitive and affective outcomes, such as achievement, cognitive engagement, and academic motivation. The quantitative and qualitative mixed methods study will be framed by student background factors and student demographics (e.g., GPA, gender, ethnicity, age, Pell Grant status, transfer status), existing, published, and tested assessment instruments, and theories of and approaches to adaptive learning with AI-enhanced technology (RealizeIT). Parametric and non-parametric statistical approaches/methods and deductive and inductive approaches/framing will guide the data collection, analysis, and interpretation. The NSF IUSE: EDU Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports creating, exploring, and implementing promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过回应解决个性化学习的巨大挑战(国家工程学院)的挑战来满足国家利益。 这项研究与开发(R&D)项目将着手进行全面的概念复制和适应性的工作,以研究以类前的自适应学习平台(APL)课程/学习模块形式的先验知识与学生情感和认知成果相关的与学生的情感和认知成果有关的程度。 在一个混合的活跃学习课堂中,预计学生将在上课前做好准备,例如,使用视频和在线评估来审查先验知识。 在大二和初中教授的五个工程核心课程将用作测试适应性学习的课堂环境。 该测试将通过比较通过学习管理系统(LMS)提供的“一定大小”的前类活动与自适应和灵活的前类课程通过自适应学习平台(ALP)进行。 课程包括统计测试和回归,线性电路和系统,流体系统,工程流体力学和计算方法。 将管理一系列已发表的评估,包括概念清单,以比较学生在LMS和ALP环境中的认知和情感结果。该研发项目将用于(1)开发,改进和部署ALP课程以及比较LMS内容,除了在三个机构的五个课程中进行五门课程的课堂和后练习; (2)将认知结果(即概念,程序性和高阶问题解决)和情感结果(认知参与和学术动机)与自适应学习(实验)与没有自适应学习(对照)进行混合课堂准备; (3)分析ALP分析/指标来研究学生的学习行为(例如花在课前准备,测验尝试数量和早期完成计数上)及其与结果的关系; (4)通过开放的教育材料,期刊/会议文章,社交媒体,网站和教师讲习班来传达发现和最佳实践。 开发和研究工作将通过三个机构的工程和工程教育教师的合作来进行:南佛罗里达大学,中央佛罗里达大学和匹兹堡大学。 调查将侧重于先验知识的角色和关联(由学生参与前类活动和学生准备的差异水平所促进)与学生的认知和情感成果,例如成就,认知参与和学术动机。 定量和定性混合方法研究将由学生背景因素和学生人口统计(例如GPA,性别,种族,年龄,年龄,Pell Grant状态,转移状态),现有,已发布和测试的评估工具以及使用AI-Anhench Technology的适应性学习的理论以及方法和方法进行构建。 参数和非参数统计方法/方法以及演绎和归纳方法/框架将指导数据收集,分析和解释。 NSF IUSE:EDU计划支持研发项目,以提高所有学生STEM教育的有效性。通过参与的学生学习轨道,该计划支持创建,探索和实施有希望的实践和工具。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelly Kibler其他文献
Kelly Kibler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelly Kibler', 18)}}的其他基金
CAREER: The influence of turbulence to mass transport in complex aquatic habitats
职业:湍流对复杂水生栖息地中质量运输的影响
- 批准号:
1944880 - 财政年份:2020
- 资助金额:
$ 11.17万 - 项目类别:
Continuing Grant
相似国自然基金
使用单分子磁镊研究DNA纽结
- 批准号:12374216
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时空交互与社会化交互协同驱动的弱势道路使用者轨迹预测方法研究
- 批准号:52302501
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
使用三维辐射磁流体力学数值模拟研究太阳活动区日冕加热问题
- 批准号:12373054
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于污水流行病学的癌症化疗药物使用状况的研究
- 批准号:42307534
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 11.17万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 11.17万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334798 - 财政年份:2024
- 资助金额:
$ 11.17万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 11.17万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344722 - 财政年份:2024
- 资助金额:
$ 11.17万 - 项目类别:
Standard Grant