CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications

职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用

基本信息

  • 批准号:
    2340631
  • 负责人:
  • 金额:
    $ 44.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2029-08-31
  • 项目状态:
    未结题

项目摘要

Networked Interacting Dynamical Systems (NetIDs) are ubiquitous, displaying complex behaviors that arise from the interactions of agents or particles. These systems have found applications in diverse fields, including ecology, engineering, and social sciences, yet their high-dimensional nature makes them challenging to study. This often leads to significant theoretical and computational difficulties, known as the “curse of dimensionality.” Recent advances in applied mathematics have shed light on these complexities, revealing that complex NetID patterns can arise from low dimensional interactions. Building on these insights, this project is dedicated to developing a theoretical and computational framework to address the estimation problems within these models by exploiting the underlying low dimensional structures. The overarching goal is to create efficient, physically interpretable surrogate models that bridge the gap between qualitative analysis and quantitative data-driven applications, ranging from sensor network optimization to modeling the environmental and climate impacts on fish migration. This research program will provide research opportunities for both undergraduate and graduate students, featuring a graduate summer school at the intersection of NetIDs and machine learning. There will be a particular focus on engaging female and underrepresented minority students in this vibrant field, blending machine learning with differential equations. The project's findings will also enrich mathematical data science course materials for both undergraduate and graduate education.This project aims to make fundamental mathematical, statistical, and computational advances for solving NetIDs' estimation problems. The research will focus on three primary areas: (1) Developing innovative sampling strategies for optimal data recovery in NetIDs with linear interactions by exploiting their inherent low-dimensionality in terms of sparsity, smoothness, low-rankness. (2) Establishing robust statistical estimation of NetIDs with nonlinear time-varying interactions by combining machine learning, numerical analysis, and functional data analysis to create physically consistent estimators that bypass the “curse of dimensionality,” while exploring the identifiability and convergence as sample sizes increase. (3) Investigating the statistical predictive properties of Graph Neural Differential Equations, aiming to derive upper bounds for their transferability and generalization error. The results of this project are expected to address the computational challenges of large-scale Graph Neural Networks and bridge theory and practice in NetIDs research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络交互动力系统(NetID)是无处不在的,显示了由代理或粒子的相互作用引起的复杂行为。这些系统已经在包括生态学、工程学和社会科学在内的不同领域得到了应用,但它们的高维性质使它们的研究具有挑战性。这通常会导致重大的理论和计算困难,即所谓的“维度诅咒”。应用数学的最新进展揭示了这些复杂性,揭示了复杂的NetID模式可以产生于低维相互作用。在这些洞察的基础上,这个项目致力于开发一个理论和计算框架,通过利用潜在的低维结构来解决这些模型中的估计问题。首要目标是创建有效的、物理上可解释的替代模型,以弥合定性分析和定量数据驱动应用之间的差距,范围从传感器网络优化到对鱼类迁徙的环境和气候影响建模。该研究计划将为本科生和研究生提供研究机会,特色是在NetID和机器学习的交叉点开设研究生暑期班。将特别关注在这个充满活力的领域吸引女性和未被充分代表的少数族裔学生,将机器学习与微分方程式结合起来。该项目的发现还将丰富本科生和研究生教育的数学数据科学课程材料。该项目旨在为解决NETID的估计问题取得基础的数学、统计和计算方面的进展。研究将集中在三个主要方面:(1)通过利用线性交互网络入侵检测系统固有的稀疏性、光滑性、低秩性等特性,开发创新的采样策略,以实现线性交互网络入侵检测系统的最优数据恢复。(2)通过将机器学习、数值分析和函数数据分析相结合,建立具有非线性时变交互作用的NetID的稳健统计估计,以创建物理上一致的估计器,绕过“维度诅咒”,同时探索随着样本量的增加可辨识性和收敛。(3)研究图神经微分方程解的统计预测性质,得到其可转移性和泛化误差的上界。该项目的成果有望解决大规模图形神经网络的计算挑战,并在NetIDs研究中架起理论和实践的桥梁。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sui Tang其他文献

On the Identifiablility of Nonlocal Interaction Kernels in First-Order Systems of Interacting Particles on Riemannian Manifolds
黎曼流形上相互作用粒子一阶系统中非局域相互作用核的可辨识性
  • DOI:
    10.48550/arxiv.2305.12340
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sui Tang;Malik Tuerkoen;Hanming Zhou
  • 通讯作者:
    Hanming Zhou
Study on the application of artificial intelligent technology in intelligent building
人工智能技术在智能建筑中的应用研究
  • DOI:
    10.1201/b18558-212
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sui Tang
  • 通讯作者:
    Sui Tang
Random Space-Time Sampling and Reconstruction of Sparse Bandlimited Graph Diffusion Field
System identification in dynamical sampling
动态采样中的系统辨识
Association between plant-based diets and depressive symptoms among Chinese middle-aged and older adults
中国中老年人植物性饮食与抑郁症状的关联
  • DOI:
    10.1038/s41538-025-00399-7
  • 发表时间:
    2025-03-25
  • 期刊:
  • 影响因子:
    7.800
  • 作者:
    Li Zhang;Shuai Chen;Lijuan Xu;Sui Tang;Chen Huang;Jin Zhou;Chang-Shu Liu;Sai Wang;Yang Cong;Tingting Li;Liangkai Chen;Wenxue Zhang;Shuang Rong
  • 通讯作者:
    Shuang Rong

Sui Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sui Tang', 18)}}的其他基金

Data-Driven Discovery of Dynamics in Interacting Agent Systems and Linear Diffusion Processes
交互代理系统和线性扩散过程中的数据驱动动力学发现
  • 批准号:
    2111303
  • 财政年份:
    2021
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant

相似海外基金

Solving the disability data puzzle to ensure progress towards equity
解决残疾数据难题,确保在实现公平方面取得进展
  • 批准号:
    IE230100561
  • 财政年份:
    2024
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Early Career Industry Fellowships
Solving cashflow shortfalls in the construction industry using digital payments with embedded finance
使用数字支付和嵌入式金融解决建筑行业的现金流短缺
  • 批准号:
    10097800
  • 财政年份:
    2024
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Collaborative R&D
Solving key issues in wearable thermoelectrics for practical applications
解决可穿戴热电器件实际应用中的关键问题
  • 批准号:
    DE240100519
  • 财政年份:
    2024
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Discovery Early Career Researcher Award
The Science of Solving Hard Subgraph Problems
解决困难子图问题的科学
  • 批准号:
    EP/X030032/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Research Grant
CAREER: Investigating linguistic and cognitive abstractions for solving word problems in minds and machines
职业:研究语言和认知抽象以解决大脑和机器中的文字问题
  • 批准号:
    2339729
  • 财政年份:
    2024
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Continuing Grant
Solving smoke taint: Overcoming the impacts of vineyard exposure to smoke
解决烟雾污染:克服葡萄园暴露于烟雾的影响
  • 批准号:
    LP210300715
  • 财政年份:
    2023
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Linkage Projects
Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
  • 批准号:
    23K11226
  • 财政年份:
    2023
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study for solving problems related to multimorbid conditions using an innovative QOL evaluation method
使用创新的生活质量评估方法解决与多病相关的问题的研究
  • 批准号:
    23H03127
  • 财政年份:
    2023
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Waste Stream Valorisation: Solving sustainable chemical production
废物流增值:解决可持续化学品生产问题
  • 批准号:
    2881252
  • 财政年份:
    2023
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Studentship
A Parallel, High-Fidelity Coupled Machine Learning/ CFD Solver Method for Solving Exascale CFD Problems with Turbulence Damping at the Liquid-Gas Inte
一种并行、高保真耦合机器学习/CFD 求解器方法,用于解决液气界面湍流阻尼的百亿亿次 CFD 问题
  • 批准号:
    2883937
  • 财政年份:
    2023
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了