EAGER: Accelerating decarbonization by representing catalysts with natural language

EAGER:通过用自然语言表示催化剂来加速脱碳

基本信息

  • 批准号:
    2345734
  • 负责人:
  • 金额:
    $ 29.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Artificial intelligence (AI)-directed design of experiments is poised to transform chemical catalysis. Instead of using traditional structural and electronic features of catalysts characterized by expensive and difficult experiments, the project leverages recent progress in large language models (LLMs) to represent catalysts by the text of synthesis procedures and reaction conditions. The approach has potential to accelerate discovery of earth-abundant, active, and selective catalysts to bring rise to an emerging carbo-chemical industry that makes low-cost products from carbon dioxide (CO2). The broader impacts of this project will serve two purposes: (1) Educate and excite students about LLMs and AI for materials discovery; and (2) demonstrate that language-based representations are universal and can be applied to any process that is expressed with language.The LLM methodology accelerates catalyst predictions with natural language processing and Bayesian optimization (BO), while leveraging chemical intuition to develop hypotheses that guide the size and composition of the experimental space. The project focuses initially on understanding and developing trimetallic catalysts for the reverse water-gas shift (RWGS) reaction. Trimetallic catalysts are more difficult to characterize than bimetallic catalysts, making them a good fit for an approach that does not need the catalyst structure to be predictive. By representing the catalysts with language, physical-chemical details such as those due to catalyst restructuring during the reaction, are captured instead by the experimental conditions as included in the text-based representation. Beyond the core approach of utilizing language to identify novel catalysts for RWGS reaction, the project will assess the effects of experimental artifacts and irreproducible results on the model’s performance. The language-based workflow will be integrated with existing computational methods to extract mechanistic information from the text of experimental procedures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)指导的实验设计即将改变化学催化。该项目利用大型语言模型(LLMs)的最新进展,通过合成过程和反应条件的文本来表示催化剂,而不是使用昂贵和困难的实验表征催化剂的传统结构和电子特征。这种方法有可能加速发现地球上丰富的、活性的和选择性的催化剂,从而使新兴的碳化学工业兴起,从二氧化碳中生产低成本的产品。该项目的广泛影响将有两个目的:(1)教育和激发学生对法学硕士和人工智能材料发现的兴趣;(2)证明基于语言的表征是普遍的,可以应用于任何用语言表达的过程。LLM方法通过自然语言处理和贝叶斯优化(BO)加速催化剂预测,同时利用化学直觉来制定指导实验空间大小和组成的假设。该项目最初的重点是了解和开发用于逆向水气转换(RWGS)反应的三金属催化剂。三金属催化剂比双金属催化剂更难表征,这使得它们很适合一种不需要催化剂结构来预测的方法。通过用语言表示催化剂,在反应过程中由于催化剂重组而引起的物理化学细节,可以通过包含在基于文本的表示中的实验条件来捕获。除了利用语言识别RWGS反应的新型催化剂的核心方法之外,该项目还将评估实验工件和不可复制结果对模型性能的影响。基于语言的工作流程将与现有的计算方法相结合,从实验过程的文本中提取机制信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Porosoff其他文献

Marc Porosoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

NSF Engines Development Award: Accelerating A Just Energy Transition Through Innovative Nature-Inclusive Offshore Wind Farms (CT,DE,MA,MD,NJ,RI,VA)
NSF 发动机开发奖:通过创新的自然包容性海上风电场加速公正的能源转型(康涅狄格州、特拉华州、马里兰州、马里兰州、新泽西州、罗德岛州、弗吉尼亚州)
  • 批准号:
    2315558
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Cooperative Agreement
FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
  • 批准号:
    24K20888
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Innovate for Sustainable Accelerating Systems
可持续加速系统创新
  • 批准号:
    10105952
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    EU-Funded
Rapidly accElerating Mof-Based soRbents as A Novel Decarbonisation Technology (REMBRANDT)
快速加速 Mof 基吸附剂作为新型脱碳技术 (REMBRANDT)
  • 批准号:
    10111050
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    EU-Funded
ART: Accelerating Research Translation in Southern Mississippi from Concepts to Careers
艺术:加速密西西比州南部从概念到职业的研究转化
  • 批准号:
    2331378
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Cooperative Agreement
Decay accelerating factor (CD55) protects against lectin pathway-mediated AT2 cell dysfunction in cigarette smoke-induced emphysema
衰变加速因子 (CD55) 可防止香烟烟雾引起的肺气肿中凝集素途径介导的 AT2 细胞功能障碍
  • 批准号:
    10990669
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
OpenBioMAPS: shared tools for accelerating UK bio-manufacturing
OpenBioMAPS:加速英国生物制造的共享工具
  • 批准号:
    BB/Y007808/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Research Grant
CC* INTEGRATION-SMALL: ADIABATIC MICROSERVICE LEVEL LOAD BALANCED FORWARDING ON PISA SWITCH FOR ACCELERATING URGENT PROCESSES IN SCIENCE DATA CENTER NETWORKS
CC* 集成小型:PISA 交换机上的绝热微服务级负载平衡转发,用于加速科学数据中心网络中的紧急进程
  • 批准号:
    2346729
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
CAREER: HayaRupu: Accelerating Natural Hazard Engineering with AI-Driven Discovery Loops
职业:HayaRupu:利用人工智能驱动的发现循环加速自然灾害工程
  • 批准号:
    2339678
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
Accelerating Trustworthy AI: developing a first-to-market AI System Risk Management Platform for Insurance Product creation
加速可信人工智能:开发首个上市的人工智能系统风险管理平台,用于保险产品创建
  • 批准号:
    10093285
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了