Averaging operators and related topics in harmonic analysis

谐波分析中的平均运算符和相关主题

基本信息

  • 批准号:
    2348797
  • 负责人:
  • 金额:
    $ 33.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This project is in harmonic analysis and approximation theory, areas within the mathematical discipline of analysis. The methods have found many applications in understanding phenomena in the natural sciences and engineering. Harmonic analysis seeks to provide efficient mathematical tools for these disciplines and contributes to the unification of seemingly unrelated areas. One of the main objectives of this project is to expand the current mathematical toolbox in harmonic analysis to contribute towards a deeper theoretical understanding which will ultimately be beneficial for applications. The mentoring of graduate students in research is an important educational component of the project. The principal investigator will work on several projects in harmonic analysis. (i) The first project is concerned with the precise regularity properties of certain averages over sub-manifolds of Euclidean space and the boundedness of associated maximal operators in Lebesgue spaces. The PI will consider mainly non-convolution variants and emphasize various classes of spherical maximal operators on nilpotent groups. (ii) In a second project the PI will study versions of the local smoothing problem for solutions of the wave equation when the dilation set is restricted. New phenomena show up even in the simplified version for radial functions. One expects that the outcomes depend on various notions of dimensions of the dilation sets, the Minkowski dimension, the quasi-Assouad dimension and intermediate scales of dimensions. The PI will also study the related problem concerns the Lp improving bounds for spherical maximal operators with restricted dilation sets, for the open case when the dilation set is not Assouad regular. (iii) The PI will pursue various projects on endpoint estimates in sparse domination, focusing on true multiscale phenomena. Atomic decompositions techniques and sharp Lp improving results for single-scaled operators play a crucial role. (iv) A fourth project is in approximation theory and concerns the characterization of approximation spaces for nonlinear wavelet approximation. The PI and his collaborators will focus on the interesting cases when the order of approximation is high, and the approximation spaces will not be normed spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目是在谐波分析和近似理论,在数学学科的分析领域。这些方法在理解自然科学和工程中的现象方面有许多应用。调和分析旨在为这些学科提供有效的数学工具,并有助于统一看似无关的领域。该项目的主要目标之一是扩展谐波分析中当前的数学工具箱,以促进更深入的理论理解,这最终将有利于应用。指导研究生从事研究是该项目的一个重要教育组成部分。首席研究员将在谐波分析的几个项目工作。(i)第一个项目是关于欧氏空间子流形上某些平均的精确正则性和Lebesgue空间中相关极大算子的有界性。PI将主要考虑非卷积变量,并强调幂零群上的各种球面极大算子。(ii)在第二个项目中,PI将研究膨胀集受限时波动方程解的局部平滑问题。即使在径向函数的简化版本中也出现了新的现象。人们期望的结果取决于各种概念的尺寸的膨胀集,闵可夫斯基维度,准Assouad维度和中间尺度的尺寸。PI还将研究相关问题涉及的Lp改进界的限制扩张集的球面极大算子,为开放的情况下,扩张集是不Assouad正则的。(iii)PI将在稀疏支配中进行各种关于端点估计的项目,专注于真正的多尺度现象。原子分解技术和单尺度算子的Lp改进结果起着至关重要的作用。(iv)第四个项目是在近似理论和关注的表征近似空间的非线性小波逼近。PI和他的合作者将专注于近似阶数较高且近似空间不是赋范空间的有趣案例。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Seeger其他文献

Bochner–Riesz means at the critical index: weighted and sparse bounds
  • DOI:
    10.1007/s00208-024-02962-1
  • 发表时间:
    2024-09-02
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    David Beltran;Joris Roos;Andreas Seeger
  • 通讯作者:
    Andreas Seeger
Inequalities for spherically symmetric solutions of the wave equation
  • DOI:
    10.1007/bf02571912
  • 发表时间:
    1995-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Detlef Müller;Andreas Seeger
  • 通讯作者:
    Andreas Seeger
On the cone of curves of an abelian variety
在阿贝尔簇的曲线锥体上
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Bauer;G. R. Everest;Allan Greenleaf;Andreas Seeger;Nobuo Hara;Yujiro Kawamata;Markus Keel;Terence Tao;Alexander Kumjian;P. Muhly;Jean N. Renault;Dana P. Williams;M. Pollicott;Richard Sharp;A. Sinclair;Roger Smith;Eng;Chen
  • 通讯作者:
    Chen
Mean lattice point discrepancy bounds, II: Convex domains in the plane
  • DOI:
    10.1007/s11854-007-0002-4
  • 发表时间:
    2007-03-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Alexander Iosevich;Eric T. Sawyer;Andreas Seeger
  • 通讯作者:
    Andreas Seeger
Spherical maximal functions on two step nilpotent Lie groups
两步幂零李群上的球极大函数
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaehyeon Ryu;Andreas Seeger
  • 通讯作者:
    Andreas Seeger

Andreas Seeger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Seeger', 18)}}的其他基金

Averaging, spectral multipliers, sparse domination and subelliptic operators
平均、谱乘数、稀疏支配和次椭圆算子
  • 批准号:
    2054220
  • 财政年份:
    2021
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Topics in Harmonic Analysis
谐波分析主题
  • 批准号:
    1764295
  • 财政年份:
    2018
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Topics in Harmonic Analysis
谐波分析主题
  • 批准号:
    1500162
  • 财政年份:
    2015
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
RTG: Analysis and Applications
RTG:分析与应用
  • 批准号:
    1147523
  • 财政年份:
    2012
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Topics in Fourier Analysis
傅立叶分析主题
  • 批准号:
    1200261
  • 财政年份:
    2012
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Topics in Fourier Analysis
傅立叶分析主题
  • 批准号:
    0652890
  • 财政年份:
    2007
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Topics in Fourier Analysis
傅立叶分析主题
  • 批准号:
    0200186
  • 财政年份:
    2002
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Topics in Fourier Analysis
傅立叶分析主题
  • 批准号:
    9970042
  • 财政年份:
    1999
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Discrete Schrodinger Operators and Related Models
离散薛定谔算子及相关模型
  • 批准号:
    2053285
  • 财政年份:
    2020
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Singular limit of the magnetic Schroedinger operators and related inequalities
磁薛定谔算子的奇异极限及相关不等式
  • 批准号:
    18K03329
  • 财政年份:
    2018
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discrete Schrodinger Operators and Related Models
离散薛定谔算子及相关模型
  • 批准号:
    1800689
  • 财政年份:
    2018
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
  • 批准号:
    1401204
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Symbolic computation of matrices of operators and related topics
运算符矩阵的符号计算及相关主题
  • 批准号:
    41897-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic study on problems related with random Schroedinger operators
随机薛定谔算子相关问题的概率研究
  • 批准号:
    26400132
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic analysis on infinite dimensional spaces and its related differential operators
无限维空间的随机分析及其相关微分算子
  • 批准号:
    26400134
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Distribution of eigenvalues of random operators and related limit theorems
随机算子特征值分布及相关极限定理
  • 批准号:
    26400148
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symbolic computation of matrices of operators and related topics
运算符矩阵的符号计算及相关主题
  • 批准号:
    41897-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Discovery Grants Program - Individual
Symbolic computation of matrices of operators and related topics
运算符矩阵的符号计算及相关主题
  • 批准号:
    41897-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了