Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras

量子群与协变代数的组合表示论

基本信息

  • 批准号:
    2348843
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Combinatorics has been described as the nanotechnology of mathematics. It is concerned with counting discrete objects, which naturally arise in many applications. As one example, software development frequently requires choosing between different algorithms to solve a problem. Combinatorics allows one to count the number of steps each candidate algorithm takes and then choose the best solution. In this way, combinatorics provides a set of basic tools and a collection of argument prototypes that guide the solution of problems throughout STEM. One of the virtues of combinatorics research is that it provides students with concrete opportunities to develop problem-solving, software development, and other key skills.Algebraic combinatorics, more specifically, focuses on the combinatorial essence of highly structured and often advanced problems coming from topology, representation theory, particle physics, and other areas. Such problems are frequently reduced in some fashion to an intricate combinatorial analysis. One such algebraic problem is to understand quantum groups. These remarkable structures arose around 1980 from connections with integrable lattice models in quantum mechanics, and some of the technically deepest theories in pure mathematics and physics are in this area. One of the main focuses of the present project is to further develop certain combinatorial diagrams called web bases. These combinatorial objects encode the representation category of quantum groups and allow for efficient computations with powerful topological quantum invariants. They connect a remarkably diverse collection of topics, including total positivity, alternating sign matrices, plane partitions, crystal bases, dynamical algebraic combinatorics, and the geometry of the affine Grassmannian. Students will be involved in the research project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组合数学被描述为数学中的纳米技术。它涉及对离散对象进行计数,这在许多应用中自然出现。作为一个例子,软件开发经常需要在不同的算法之间进行选择来解决问题。组合数学允许计算每个候选算法所需的步骤数,然后选择最佳解决方案。通过这种方式,组合学提供了一组基本工具和一组参数原型,用于指导整个STEM中的问题解决方案。组合数学研究的优点之一是它为学生提供了发展解决问题,软件开发和其他关键技能的具体机会。更具体地说,代数组合数学侧重于高度结构化的组合本质,并且通常是来自拓扑学,表示论,粒子物理学和其他领域的高级问题。这样的问题往往以某种方式减少到一个复杂的组合分析。其中一个代数问题是理解量子群。这些非凡的结构产生于1980年左右,与量子力学中的可积晶格模型有关,纯数学和物理学中一些技术上最深刻的理论都在这个领域。本项目的主要重点之一是进一步开发某些称为网络库的组合图。这些组合对象编码的表示类别的量子群,并允许有效的计算与强大的拓扑量子不变量。它们连接了一系列非常多样化的主题,包括全正性、交替符号矩阵、平面分区、晶体基、动态代数组合学和仿射格拉斯曼几何。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Swanson其他文献

Joshua Swanson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Combinatorial Representation Theory
组合表示理论
  • 批准号:
    2246846
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
  • 批准号:
    2237057
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
  • 批准号:
    2400460
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
  • 批准号:
    RGPIN-2018-04044
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Representation Theory
组合表示理论
  • 批准号:
    2153998
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
  • 批准号:
    EP/W007509/1
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
  • 批准号:
    2137628
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
  • 批准号:
    RGPIN-2018-04044
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Group Actions and Applications to Geometry, Knot Theory, and Representation Theory
组合群动作及其在几何、纽结理论和表示论中的应用
  • 批准号:
    2054513
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了