Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
基本信息
- 批准号:2349623
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will investigate several questions in commutative algebra, a field that studies solution sets of polynomial equations. The research will yield concrete information about the properties of solution sets of such equations. Polynomial equations arise in a wide number of applications; one fruitful approach to their study is via studying polynomial functions on their solution sets, that form what is known as a commutative ring. This offers an enormous amount of flexibility in studying solutions sets in various settings, and indeed commutative algebra continues to develop a fascinating interaction with several fields, becoming an increasingly valuable tool in science and engineering. A key component of this project is the training of graduate students in topics connected with the research program.The focus of the research is on questions related to local cohomology, differential operators, and the property of having finite Frobenius representation type. Local cohomology often provides the best answers to fundamental questions such as the least number of polynomial equations needed to define a solution set; this will be investigated for solution sets related to certain rings of invariants. The differential operators that one encounters in calculus make sense in good generality on solution sets of polynomial equations and are proving to be an increasingly fruitful object of study. Similarly, finite Frobenius representation type, first introduced for the study of differential operators, is proving to be a very powerful property with several applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究交换代数的几个问题,该领域研究了解决多项式方程的解决方案集。该研究将产生有关此类方程解决方案集的特性的具体信息。多项式方程在大量应用中出现;他们研究的一种富有成果的方法是通过在其溶液集上研究多项式功能,这形成了所谓的交换环。这在研究各种环境中的解决方案集方面提供了很大的灵活性,并且实际上是交换代数继续与几个领域建立迷人的互动,成为科学和工程学中越来越有价值的工具。该项目的一个关键组成部分是对与研究计划相关的主题研究生的培训。该研究的重点是与本地共同体,差异操作员以及具有有限的Frobenius代表类型的财产有关的问题。当地的共同体通常为基本问题提供了最佳答案,例如定义解决方案集所需的多项式方程数量最少;这将研究与某些不变性环相关的解决方案集。一个人在微积分中遇到的差分运算符在多项式方程的解决方案集上具有良好的通用性,并且被证明是一个越来越有成果的研究对象。同样,有限的Frobenius代表类型首先是为差异操作员研究引入的,被证明是具有多种应用程序的非常强大的财产。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子来评估的支持,并具有更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anurag Singh其他文献
Energy-Based DCT Approach for PPG Compression
用于 PPG 压缩的基于能量的 DCT 方法
- DOI:
10.1109/embc48229.2022.9871575 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shresth Gupta;Anurag Singh;Abhishek Sharma - 通讯作者:
Abhishek Sharma
Ensemble Learning with Hybrid Modelling for Multivariate AQI, PM2.5, and PM10 Forecasting in Mumbai
使用混合建模进行集成学习,用于孟买的多元 AQI、PM2.5 和 PM10 预测
- DOI:
10.1109/cset58993.2023.10346745 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anurag Singh;Pratham Soni;Deepa Krishnan;Ishaan Potle - 通讯作者:
Ishaan Potle
Biclonal chronic lymphocytic leukemia presenting as skin lesion.
双克隆慢性淋巴细胞白血病表现为皮肤病变。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.1
- 作者:
Anurag Singh;S. Graziano;Neerja Vajpayee - 通讯作者:
Neerja Vajpayee
149 Synthetic Lethal Interaction of Combined BCL-XL and MEK Inhibition Promotes Tumor Regressions in KRAS-mutant Cancer Models
149 BCL-XL 和 MEK 联合抑制的合成致死相互作用促进 KRAS 突变癌症模型中的肿瘤消退
- DOI:
10.1016/s0959-8049(12)71947-0 - 发表时间:
2012 - 期刊:
- 影响因子:8.4
- 作者:
R. Corcoran;Katherine A. Cheng;A. Hata;A. Faber;Anurag Singh;J. Settleman;C. Benes;M. Mino‐Kenudson;Kwok;J. Engelman - 通讯作者:
J. Engelman
Anurag Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anurag Singh', 18)}}的其他基金
Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
- 批准号:
2101671 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Determinantal Rings, Local Cohomology, and Tight Closure
行列式环、局部上同调和紧闭
- 批准号:
1801285 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Questions on Local Cohomology and Tight Closure Theory
关于局部上同调和紧闭理论的问题
- 批准号:
1500613 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Local cohomology, tight closure, and related questions
局部上同调、紧闭性及相关问题
- 批准号:
1162585 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Tight Closure, Local Cohomology, and Related Questions
紧闭、局部上同调及相关问题
- 批准号:
0600819 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Generation problems in module categories and derived categories of commutative noetherian rings
交换诺特环模范畴和派生范畴的生成问题
- 批准号:
19K03443 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on quasi-Frobenius rings based on the Faith conjecture
基于Faith猜想的拟Frobenius环研究
- 批准号:
26400047 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Noetherian local rings in commutative algebra
交换代数中诺特局部环的研究
- 批准号:
19540060 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetical study of ring and representation Theory based on Quasi-Frobenius rings
环的综合研究及基于拟弗罗贝尼乌斯环的表示理论
- 批准号:
18340011 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Frobenius Rings and Related Problems
弗罗贝尼乌斯环及相关问题的研究
- 批准号:
17540029 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)