Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
基本信息
- 批准号:2350351
- 负责人:
- 金额:$ 25.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports research on the regularity of solutions to elliptic partial differential equations and regularity of generalized minimal submanifolds. Elliptic differential equations govern the equilibrium configurations of various physical phenomena, for instance, those arising from minimization problems for natural energy functionals. Examples include the shape of free-hanging bridges, the shape of soap bubbles, and the sound of drums. Elliptic differential equations are also used to quantify the degree to which physical objects are bent or distorted, with far-reaching implications and applications in geometry and topology. The proposed research focuses on the regularity of solutions to such equations. Questions to be addressed include the following: Do non-smooth points (singularities) exist? How large can the set of singularities be? What is the behavior of the solution near a singularity? Is it possible to perturb the underlying environment in order to eliminate the singularity? The project will also provide opportunities for the professional development of graduate students, both via individual mentoring and via the organization of a directed learning seminar on geometric analysis and geometric measure theory.The mathematical objectives of the project are twofold. First, the principal investigator will study unique continuation for solutions to elliptic partial differential equations, with a focus on quantitative estimates on the size and structure of the singular set of these solutions. A second topic for consideration is the regularity theory for generalized minimal submanifolds (a generalized notion of smooth submanifolds which arise as critical points for the area functional under local deformations). In particular, the principal investigator will study branch singular points in the interior as well as at the boundary of a generalized minimal submanifold, under an area-minimizing or stability assumption. Research on the latter topic, which can be viewed as a non-linear analogue of quantitative unique continuation for elliptic equations, requires the integration of ideas from geometric measure theory, partial differential equations and geometric analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持对椭圆型偏微分方程解的正则性和广义极小子流形正则性的研究。椭圆型微分方程控制着各种物理现象的平衡构型,例如,由自然能量泛函的最小化问题引起的那些现象。例如,自由悬挂桥的形状、肥皂泡的形状和鼓声。椭圆型微分方程也被用来量化物理对象弯曲或扭曲的程度,在几何学和拓扑学中有着深远的影响和应用。本文的研究重点是这类方程解的正则性。需要解决的问题包括:是否存在非光滑点(奇点)?奇点的集合能有多大?解在奇点附近的行为是什么?有没有可能为了消除奇点而扰乱底层环境?该项目还将通过个人辅导和组织几何分析和几何测量理论的定向学习研讨会,为研究生提供专业发展的机会。首先,主要研究者将研究椭圆型偏微分方程解的唯一延拓性,重点是对这些解的奇异集的大小和结构的定量估计。第二个要考虑的主题是广义极小子流形的正则性理论(在局部变形下作为面积泛函的临界点出现的光滑子流形的广义概念)。特别是,在面积最小化或稳定性的假设下,主要研究者将研究广义极小子流形内部和边界上的分支奇点。对后一个主题的研究,可以被视为椭圆型方程定量唯一延拓的非线性模拟,需要整合几何测度论、偏微分方程式和几何分析的思想。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zihui Zhao其他文献
Square function estimates, the BMO Dirichlet problem, and absolute continuity of harmonic measure on lower-dimensional sets
平方函数估计、BMO 狄利克雷问题以及低维集上调和测度的绝对连续性
- DOI:
10.2140/apde.2019.12.1597 - 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
S. Mayboroda;Zihui Zhao - 通讯作者:
Zihui Zhao
Association between exposure to volatile organic compounds and allergic symptoms: Emphasis on the cocktail effect and potential mechanisms of toxicity
暴露于挥发性有机化合物与过敏症状之间的关联:强调鸡尾酒效应和潜在毒性机制
- DOI:
10.1016/j.ecoenv.2025.118002 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:6.100
- 作者:
Xianhao Wang;Liangao Wang;Xuezhen Zhao;Chi Zhang;Xinyue Wang;Tianqi Ma;Zihui Zhao;Yiqian Wang;Meng Liu;Xianfeng Yue;Xinxia Lu;Mengyao Zhang;Long Ji;Zhong Liu;Dong Li - 通讯作者:
Dong Li
Human influence on summer wetting in Northwest China from 1961 to 2014: Roles of greenhouse gases and anthropogenic aerosols
1961 年至 2014 年中国西北夏季增湿的人类影响:温室气体和气溶胶的作用
- DOI:
10.1016/j.atmosres.2025.108289 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:4.400
- 作者:
Rui He;Yan Guo;Buwen Dong;Neng Luo;Zihui Zhao;Zhibo Gao - 通讯作者:
Zhibo Gao
Elliptic operators in rough sets and the Dirichlet problem with boundary data in Hölder spaces
粗糙集上的椭圆算子以及在 Hölder 空间中具有边界数据的狄利克雷问题
- DOI:
10.1016/j.jfa.2024.110801 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Mingming Cao;Pablo Hidalgo-Palencia;José María Martell;Cruz Prisuelos-Arribas;Zihui Zhao - 通讯作者:
Zihui Zhao
BMO Solvability and $$A_{\infty }$$ Condition of the Elliptic Measures in Uniform Domains
- DOI:
10.1007/s12220-017-9845-9 - 发表时间:
2017-04-26 - 期刊:
- 影响因子:1.500
- 作者:
Zihui Zhao - 通讯作者:
Zihui Zhao
Zihui Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zihui Zhao', 18)}}的其他基金
相似海外基金
Refresh, Continuation, and Science Exploitation of the Birmingham Solar-Oscillations Network (BiSON)
伯明翰太阳振荡网络(BiSON)的更新、延续和科学开发
- 批准号:
ST/Z000025/1 - 财政年份:2024
- 资助金额:
$ 25.37万 - 项目类别:
Research Grant
Development of support measures and clarification of promotion factors for the expansion and continuation of intergenerational programs
制定支持措施并明确促进因素,以扩大和延续代际计划
- 批准号:
23H00906 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Metallic States, A Continuation Proposal
超导体-(金属)-绝缘体转变:了解金属态的出现,延续提案
- 批准号:
2307132 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Continuing Grant
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Continuation of the NuMoM2b Heart Health Study
NuMoM2b 心脏健康研究的延续
- 批准号:
10905863 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Arizona Department of Health Services, MFRPS Maintenance and continuation of the State Manufactured Food Regulatory Progam
亚利桑那州卫生服务部、MFRPS 维护和延续州制造食品监管计划
- 批准号:
10829093 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Nonlinear Ground Vibration Testing using Control-based Continuation
使用基于控制的延续进行非线性地面振动测试
- 批准号:
EP/W032236/1 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Research Grant
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
- 批准号:
EP/X026027/1 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Fellowship
Infrastructure for Digital Arts and Humanities: a National Repository for Literature and Linguistics Continuation 2023-2025
数字艺术和人文基础设施:2023-2025 年国家文学和语言学继续知识库
- 批准号:
AH/Y007689/1 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Research Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
- 批准号:
2323531 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant