Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
基本信息
- 批准号:2350351
- 负责人:
- 金额:$ 25.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports research on the regularity of solutions to elliptic partial differential equations and regularity of generalized minimal submanifolds. Elliptic differential equations govern the equilibrium configurations of various physical phenomena, for instance, those arising from minimization problems for natural energy functionals. Examples include the shape of free-hanging bridges, the shape of soap bubbles, and the sound of drums. Elliptic differential equations are also used to quantify the degree to which physical objects are bent or distorted, with far-reaching implications and applications in geometry and topology. The proposed research focuses on the regularity of solutions to such equations. Questions to be addressed include the following: Do non-smooth points (singularities) exist? How large can the set of singularities be? What is the behavior of the solution near a singularity? Is it possible to perturb the underlying environment in order to eliminate the singularity? The project will also provide opportunities for the professional development of graduate students, both via individual mentoring and via the organization of a directed learning seminar on geometric analysis and geometric measure theory.The mathematical objectives of the project are twofold. First, the principal investigator will study unique continuation for solutions to elliptic partial differential equations, with a focus on quantitative estimates on the size and structure of the singular set of these solutions. A second topic for consideration is the regularity theory for generalized minimal submanifolds (a generalized notion of smooth submanifolds which arise as critical points for the area functional under local deformations). In particular, the principal investigator will study branch singular points in the interior as well as at the boundary of a generalized minimal submanifold, under an area-minimizing or stability assumption. Research on the latter topic, which can be viewed as a non-linear analogue of quantitative unique continuation for elliptic equations, requires the integration of ideas from geometric measure theory, partial differential equations and geometric analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持有关椭圆形部分微分方程解决方案的规律性的研究以及广义最小次曼菲尔德的规律性。椭圆形微分方程控制了各种物理现象的平衡构型,例如,自然能量功能最小化问题的平衡构型。例子包括自由悬挂桥的形状,肥皂气泡的形状和鼓声。椭圆形的微分方程也用于量化物理对象弯曲或扭曲的程度,具有深远的含义以及几何和拓扑的应用。拟议的研究集中于此类方程的规律性。要解决的问题包括以下内容:是否存在非平滑点(奇异点)?一组奇点可以有多大?奇异性附近的解决方案的行为是什么?是否有可能扰动基础环境以消除奇异性?该项目还将通过个人指导和组织有关几何分析和几何测量理论的有指导学习研讨会的组织为研究生的专业发展提供机会。项目的数学目标是双重的。首先,首席研究者将研究椭圆形偏微分方程解决方案的独特延续,重点是对这些解决方案奇异集的大小和结构的定量估计。要考虑的第二个主题是广义最小亚曼叶的规律性理论(平滑的亚策略的普遍概念,在局部变形下作为该区域功能的关键点出现)。特别是,在面积最小化或稳定性假设下,主要研究者将研究内部和广义最小亚曼福尔德的边界的分支单数点。对后一个主题的研究可以看作是椭圆方程的定量独特延续的非线性类似物,就需要从几何措施理论,部分差分方程和几何分析中整合思想。该奖项反映了NSF的法规使命,并认为通过基金会的知识优点和广泛的crietia criter criter criter criter criter criter criter criter criter criter criter criter critia criter critia criter critia criter criter critia criter critia critia critia critia critia criteria crietia crietia均值得一提。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zihui Zhao其他文献
Square function estimates, the BMO Dirichlet problem, and absolute continuity of harmonic measure on lower-dimensional sets
平方函数估计、BMO 狄利克雷问题以及低维集上调和测度的绝对连续性
- DOI:
10.2140/apde.2019.12.1597 - 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
S. Mayboroda;Zihui Zhao - 通讯作者:
Zihui Zhao
BMO Solvability and A ∞ Condition of the Elliptic Measures in Uniform Domains
均匀域椭圆测度的BMO可解性和A ∞ 条件
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zihui Zhao - 通讯作者:
Zihui Zhao
Erlang planning network: An iterative model-based reinforcement learning with multi-perspective
Erlang规划网络:基于迭代模型的多视角强化学习
- DOI:
10.1016/j.patcog.2022.108668 - 发表时间:
2022 - 期刊:
- 影响因子:8
- 作者:
Jiao Wang;Lemin Zhang;Zhengbing He;Can Zhu;Zihui Zhao - 通讯作者:
Zihui Zhao
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
Zihui Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zihui Zhao', 18)}}的其他基金
相似国自然基金
MicroRNA-148a信号网络调控肝癌恶性表型的继续研究
- 批准号:81773033
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
氧化钚在空气中继续氧化腐蚀的机理及动力学研究
- 批准号:11604187
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MicroRNA分子信号网络调控肺癌骨转移的继续研究
- 批准号:81572639
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
小鼠断颈死后组织中RNA与DNA相对含量与死亡时间相关性的继续研究
- 批准号:81471827
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
中国现代建筑史继续研究(2000-2010)
- 批准号:51308379
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
- 批准号:
2323531 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
- 批准号:
2152487 - 财政年份:2022
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
Unique Continuation and Regularity of CR Mappings
CR映射的独特延续性和规律性
- 批准号:
1855737 - 财政年份:2019
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
Optimal Regularity for Nonlinear Pde's and Systems in Carnot-Caratheodory Spaces and Applications to Geometry, Symmetry for Pde's, Unique Continuation
卡诺-卡拉特奥多里空间中非线性偏微分方程和系统的最优正则性及其几何应用、偏微分方程的对称性、唯一延拓
- 批准号:
9706892 - 财政年份:1997
- 资助金额:
$ 25.37万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unique Continuation, Regularity of Solutions to Linear and Nonlinear Equations of Nonelliptic Type, Symmetry for PDE's
数学科学:非椭圆型线性和非线性方程解的唯一连续性、正则性、偏微分方程的对称性
- 批准号:
9404358 - 财政年份:1994
- 资助金额:
$ 25.37万 - 项目类别:
Continuing Grant