Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
基本信息
- 批准号:2401360
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is an important field of mathematics whose goal is to understand fundamental geometric shapes called algebraic varieties. The study of such shapes is a source of many applications, for example, in cryptography, engineering, or biology. The principal investigator's research centers around algebraic varieties and singularities in arithmetic settings. The PI plans to expand and build upon recent breakthroughs in arithmetic and complex geometry to increase our understanding of such objects. The PI will involve graduate students in this research and organize workshops aimed at early career mathematicians.The key goal of the PI is to develop and apply new techniques related to Hodge theory, p-adic Riemann-Hilbert correspondence, and quasi-F-splittings to describe the behavior of higher differential forms in positive characteristic, improve our understanding of mixed characteristic singularities, and extend the validity of the Minimal Model Program in the arithmetic settings. This work will lead to new advancements in birational geometry and commutative algebra.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何是数学的一个重要领域,其目标是理解被称为代数簇的基本几何形状。对这种形状的研究是许多应用的来源,例如,在密码学,工程学或生物学中。首席研究员的研究中心围绕代数簇和奇点的算术设置。PI计划扩大和建立在算术和复杂几何学的最新突破,以增加我们对这些物体的理解。PI将邀请研究生参与这项研究,并组织针对早期职业数学家的研讨会。PI的主要目标是开发和应用与Hodge理论,p-adic Riemann-Hilbert对应和准F-分裂相关的新技术,以描述正特征的高阶微分形式的行为,提高我们对混合特征奇点的理解,并在算法设置上扩展了最小模型程序的有效性。这项工作将导致双有理几何和交换代数的新进展。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jakub Witaszek其他文献
Quasi-$F^e$-splittings and quasi-$F$-regularity
准$F^e$-分裂和准$F$-正则性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hiromu Tanaka;Jakub Witaszek;Fuetaro Yobuko - 通讯作者:
Fuetaro Yobuko
Resolution and alteration with ample exceptional divisor
- DOI:
10.1007/s11425-023-2249-3 - 发表时间:
2024-01-12 - 期刊:
- 影响因子:1.500
- 作者:
János Kollár;Jakub Witaszek - 通讯作者:
Jakub Witaszek
Jakub Witaszek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jakub Witaszek', 18)}}的其他基金
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
- 批准号:
2306854 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
- 批准号:
2101897 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于MIXED Transformer和DS-TransUNet构建嵌入椎旁肌退变量化模块的体内校准骨密度模型检测骨质疏松的可行性研究。
- 批准号:82302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Singularities in Positive and Mixed Characteristic Commutative Algebra
正和混合特征交换代数中的奇点
- 批准号:
2200716 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Singularity theory in mixed characteristic and its applications to the theory of F-singularities and birational geometry
混合特性奇异性理论及其在F-奇异性和双有理几何理论中的应用
- 批准号:
22H01112 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
2139613 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952399 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952522 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952531 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1951376 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952366 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Lifting harmonic morphisms in mixed characteristic
混合特征中的提升调和态射
- 批准号:
465367-2014 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
University Undergraduate Student Research Awards
Extending the Plus Closure for Mixed Characteristic Rings
扩展混合特征环的 Plus 闭合
- 批准号:
0100731 - 财政年份:2001
- 资助金额:
$ 25万 - 项目类别:
Standard Grant