Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics

多尺度磁子晶体和分数阶薛定谔方程控制的动力学

基本信息

  • 批准号:
    2420266
  • 负责人:
  • 金额:
    $ 49.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Nontechnical Abstract:This project focuses on the design of advanced materials utilizing the geometries of nature. Nature, unlike geometry class in high school, is not composed of smooth lines, planes, and spheres, but rather bumpy, wrinkled, jagged curves like DNA wrapped up in the cell, surfaces like a mountainous landscape, and volumes like the porous nature of soil in the water table. Fractional derivatives have been used to describe these geometries of nature, but no one has built such geometries from the ground up, element by element. Using textured thin magnetic films, the team will build such geometries as the basis for a new class of materials intermediate between order and disorder. These materials will control transport of information in the form of waves of magnetism, called spin waves, moving through our textured thin film slower (sub-diffusive) or faster (super-diffusive) than possible in simple geometries used up till now. Construction of this new artificial material will be the first experimental realization of a quantum fractional derivative, because spin waves follow the same equations as the wave physics of quantum mechanics, in this case the fractional Schrödinger equation, up till now a purely theoretical idea. A key facet of this work is cross-training of graduate students between theory and experiment, producing a more robust workforce that can work in multiple modalities to solve new problems not tractable otherwise. Fields in which the work force can excel with this knowledge include battery technology, based on porous, fractional materials; the spread of contaminants in soil and the water table; and vascular structures for transport in biological matter, including self-healing materials based on biological ideas. Technical Abstract:Fractional derivatives describe the bumpy, wrinkled, and jagged geometries of nature, where an integer derivative leads to divergent results rendering traditional definition of a derivative inapplicable, due to a rapid increase in the tangent and curvature with decreasing “ruler size”. Such natural geometries in the quantum context have been theoretically described with the fractional Schrӧdinger equation but never experimentally studied. The team will explore the fractional Schrӧdinger equation-governed fundamental physics in multi-scale materials that consist of magnetic thin film–based, spatially modulated magnonic crystals. They will design and measure tunable sub-diffusive and super-diffusive transport in this artificial lattice as clear evidence of fractional Schrӧdinger equation dynamics. The design builds on a new order-disorder lattice modulation axis, with an ordered lattice at one extreme and a disordered lattice giving rise to Anderson localization at the other. The project will provide a general basis for generating fractional partial differential equations, and lead to a deeper understanding of the present highly empirical approach to porous and other fractional media ranging from battery applications to biomimetic Murray materials to spread of contaminants in soil and the water table. The program will be carried out through tight, integral collaborations between Mingzhong Wu's experimental group at Colorado State University and Lincoln Carr's theoretical group at Colorado School of Mines. Working together as an integrated team encompassing experimental and theoretical condensed matter physics, they propose a multi-faceted approach to meet broader impact goals, centrally themed on blending experiment and theory to train our graduate and undergraduate student to become well-rounded scientists. This DMR grant supports research on fundamental understanding of quantum materials and especially exploring principles that cross-cuts many other condensed matter systems with funding from the Condensed Matter Physics (CMP) Program in the Division of Materials Research of the Mathematical and Physical Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:该项目着重于利用自然几何形状的高级材料设计。自然与高中时的几何类别不同,不是由平滑的线条,平面和球体组成,而是颠簸,包裹,锯齿状的曲线,例如包裹在牢房中的DNA,像山区景观之类的表面,以及像土壤中土壤的多孔性质。分数衍生物已被用来描述这些自然的几何形状,但是没有人从元素上构建了从头开始的几何形状。使用纹理的薄磁性膜,该团队将建立许多几何形状,以此作为中间体和无序之间中间的新材料的基础。这些材料将以磁性波的形式控制信息的传输,称为自旋波,在我们的纹理薄膜中移动较慢(次 - 放射线)或更快的(超级放射线),而不是在迄今为止使用的简单几何形状。这种新的人造物质的构造将是量子分数衍生物的第一个实验实现,因为自旋波遵循与量子力学的波形物理学相同的方程式,在这种情况下,直到现在,纯粹的理论思想。这项工作的一个关键方面是研究生在理论和实验之间的交叉培训,产生了一个更强大的劳动力,可以以多种方式工作,以解决新的问题,否则不可解决。劳动力可以根据多孔的分数材料的电池技术出色的领域包括电池技术;污染物在土壤和地下水位中的扩散;和生物学运输的血管结构,包括基于生物学思想的自我修复材料。技术摘要:分数衍生物描述了自然界的颠簸,包裹和锯齿状的几何形状,其中整数衍生物导致呈不同的结果,从而使衍生物不适用的传统定义因较小的和曲率的迅速增加而随着“标尺大小的减小”而迅速增加。理论上用分数schrnegeter方程描述了量子上下文中这种天然几何形状,但从未实验研究。该团队将探索由基于磁性薄膜的空间调制磁晶体组成的多尺度材料中的分数schrnameter方程治疗基本物理。他们将在这个人工晶格中设计和测量可调节的次 - 扩散和超扩散运输,作为分数schrnamer方程动力学的明确证据。该设计建立在新的订单晶格调制轴上,一个极端的有序晶格,而无序的晶格则导致了安德森的定位。该项目将为产生分数偏微分方程提供一般的基础,并高度深入了解当前。多孔和其他分数介质的经验方法,从电池应用到仿生默里材料,再到污染物在土壤和地下水位中的传播。该计划将通过在科罗拉多州立大学的Mingzhong Wu的实验小组与林肯·卡尔(Lincoln Carr)的理论小组之间进行紧密的整体合作进行。他们作为一个综合实验和理论凝结物理学的综合团队共同努力,他们提出了一种多方面的方法来满足更广泛的影响目标,以融合实验和理论为主题,以培训我们的研究生和本科生,以成为全面的科学家。该DMR赠款支持对量子材料的基本理解的研究,特别是探讨了在数学和物理科学局的材料研究部中,通过凝聚态物理学(CMP)计划(CMP)计划的资金进行了跨越的原则,这些奖项将对NSF的法定任务进行了评估,并在评估范围内对基础进行了评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mingzhong Wu其他文献

Cloning and trapping of magnetostatic spin-wave pulses by parametric pumping
通过参数泵浦克隆和捕获静磁自旋波脉冲
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin R. Smith;V. Vasyuchka;Mingzhong Wu;G. Melkov;C. Patton
  • 通讯作者:
    C. Patton
Structural and magnetic properties of nanostructured Ni0.5Zn0.5Fe2O4 films fabricated by thermal spray
热喷涂纳米结构Ni0.5Zn0.5Fe2O4薄膜的结构和磁性能
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Ge;X. Ma;Tony Zhang;Mingzhong Wu;Heng Zhang;Y. D. Zhang;J. Ings;J. Yacaman
  • 通讯作者:
    J. Yacaman
Supplemental Materials for “ Photo-Spin-Voltaic Effect ”
“光自旋伏打效应”补充材料
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Ellsworth;Lei Lu;Jin Lan;Houchen Chang;Peng Li;Zhe Wang;Jun Hu;Bryan Johnson;Yuqi;Bian;Jiang Xiao;R. Wu;Mingzhong Wu
  • 通讯作者:
    Mingzhong Wu
Structure and magnetic properties of NiFe/SiO2 and Co/SiO2 nanocomposites consolidated by detonation compaction
爆炸压实固结NiFe/SiO2和Co/SiO2纳米复合材料的结构和磁性能
  • DOI:
    10.1063/1.1558606
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. D. Zhang;X. Ma;S. Hui;Mingzhong Wu;S. Ge;W. Hines;J. Budnick;B. Cetegen;S. Semenov
  • 通讯作者:
    S. Semenov
Magnetization and antiferromagnetic coupling of the interface between a 20 nm <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Y</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Fe</mml:mi><mml:mn>5</mml:mn></mml:msub><mml:msub><mml:mi
20 nm <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml: 之间界面的磁化和反铁磁耦合mi mathvariant="normal">Y</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Fe</mml:mi>< mml:mn>5</mml:mn></mml:msub><mml:msub><mml:mi
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    M. Roos;P. Quarterman;Jinjun Ding;Mingzhong Wu;B. Kirby;B. Zink
  • 通讯作者:
    B. Zink

Mingzhong Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mingzhong Wu', 18)}}的其他基金

Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
  • 批准号:
    2408972
  • 财政年份:
    2023
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2002980
  • 财政年份:
    2020
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant
Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
  • 批准号:
    1915849
  • 财政年份:
    2019
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant
Spin Waves in Disordered Potentials: Interplay between Disorder, Nonlinearity, and Incoherence
无序势中的自旋波:无序、非线性和不相干之间的相互作用
  • 批准号:
    1407962
  • 财政年份:
    2014
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Continuing Grant
Spintronics with Yttrium Iron Garnets - From Fundamental Physics to Device Concepts
使用钇铁石榴石的自旋电子学 - 从基础物理到设备概念
  • 批准号:
    1231598
  • 财政年份:
    2012
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant
Nonlinear Spin Waves in Magnetic Films: New Concepts and Applications
磁性薄膜中的非线性自旋波:新概念和应用
  • 批准号:
    0906489
  • 财政年份:
    2009
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Continuing Grant
Novel Magnetic Nano Films and Devices for Millimeter Wave Communications
用于毫米波通信的新型磁性纳米薄膜和器件
  • 批准号:
    0725386
  • 财政年份:
    2007
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant

相似国自然基金

基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
  • 批准号:
    32370477
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于容量驱动的大规模异构天线阵列关键技术研究
  • 批准号:
    62301460
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模强化学习任务的预测控制理论与方法研究
  • 批准号:
    62376179
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
  • 批准号:
    62376135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向非对称收发机的大规模MIMO传输理论与方法研究
  • 批准号:
    62301221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Fellowship
Flok Health: Developing a pocket physiotherapist to deliver personalised healthcare at population scale
Flok Health:开发袖珍物理治疗师以在人口规模上提供个性化医疗保健
  • 批准号:
    10100082
  • 财政年份:
    2024
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Collaborative R&D
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了