移動境界問題に対する実用的数値解法とその数学的誤差評価
动边界问题实用数值求解方法及其数学误差评估
基本信息
- 批准号:09740147
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
時間変化する自由境界の運動を求める移動境界問題に対するレベルセット法による数値解法の開発とその解析を重点的に行った。具体的には、自由境界問題として平均曲率流問題と2相ステファン問題を取り上げ、前年度に開発した符号付距離関数の有限要素近似を利用したレベルセット法をもとに、次のような改良と数値シミュレーションによる解析を行った。1. 固定メッシュを使い、自由境界の近傍だけで符号付距離関数の数値計算を行えるような数値計算アルゴリズムを開発した。それにより、大幅な計算時間とメモリの節約が実現され、より実用的な数値解法になった。2. いくつかの厳密解と数値計算結果との比較を行い、収束に必要な数値計算を実行する自由境界の近傍の幅とメッシュサイズとの関係を実験的に調査を行い、経験則としてそれらの間の関係式を得た。3. この数値解法の適用性と実用性、信頼性を調べるために、他の方法との比較や、自由境界が特異性を持つ場合などについても数値的に調べ、十分な適用性・実用性・信頼性があることを確かめた。4. 2相ステファン問題に今回の数値計算法を用い、過冷却液体中の結晶の成長のシミュレーションを行った。それにより、チップスプリッティングなどの界面の不安定成長現象が数値シミュレーションによって再現された。今回開発した数値解法は、今後、移動境界問題のある程度汎用的な数値計算法に成り得ることが期待され、今回の研究によりその足掛かりが出来たことも重要な成果である。
The problem of free movement in time is solved by numerical solution and analysis. The concrete problem of free state and average curvature flow is solved by using the finite element approximation method of symbol distance and previous year's development. 1. The calculation of the numerical value of the distance between the fixed boundary and the free boundary is carried out. The calculation time is greatly reduced, and the calculation time is greatly reduced. 2. The results of calculation of numerical value of the closed solution are compared and the necessary numerical value calculation is carried out. The relationship between the amplitude of the closed solution and the free solution is investigated and the relationship between the two solutions is obtained. 3. The applicability, practicality, reliability of the numerical solution, the comparison of other methods, the specificity of the free realm, the adaptability, practicality, reliability, and the accuracy of the numerical solution. 4. A numerical method for calculating the crystal growth in a supercooled liquid is proposed. The unstable growth phenomenon of the interface between the two groups is discussed in detail. The numerical value solution of this paper is open, and the numerical value calculation method of the general use of the mobile state problem is expected to be successful. The research of this paper is full of important results.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masato Kimura: "Numerical Analysis of Moving Boundary Roblems Using the Boundary Tracking Method" Japan Journal of Industrial and Applied Mathematics. 14. 373-398 (1997)
Masato Kimura:“使用边界跟踪方法对移动边界问题进行数值分析”日本工业与应用数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
木村正人: "境界追跡法による移動境界問題の数値解析" 数理科学. 36・3. 42-47 (1998)
木村正人:“使用边界追踪方法对移动边界问题进行数值分析”《数学科学》36・3(1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
木村 正人其他文献
亀裂進展数理モデル構築とその数学解析の試み
裂纹扩展数学模型的构建及其数学分析的尝试
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
H. Osaka;大塚 厚二;H. Osaka;畔上 秀幸;H. Osaka;大塚 厚二;H. Osaka;木村 正人;H. Osaka;大坂博幸;木村 正人 - 通讯作者:
木村 正人
Application of GJ-integral to shape optimization problems for partial differential equation/system with mixed boundary conditions
GJ积分在混合边界条件偏微分方程/系统形状优化问题中的应用
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Osaka;Dinh Trung Hoa;Ho Minh Toan;木村 正人;大塚 厚二;Hiroyuki Osaka;Hiroyuki Osaka;畔上 秀幸;Hiroyuki Osaka;大塚 厚二;Hiroyuki Osaka;K. Ohtsuka - 通讯作者:
K. Ohtsuka
最近の FreeFem++
最近的 FreeFem++
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Osaka;Dinh Trung Hoa;Ho Minh Toan;木村 正人;大塚 厚二;Hiroyuki Osaka;Hiroyuki Osaka;畔上 秀幸;Hiroyuki Osaka;大塚 厚二 - 通讯作者:
大塚 厚二
Theory of GJ-integral and its application for shape optoimization
GJ积分理论及其在形状优化中的应用
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Osaka;Dinh Trung Hoa;Ho Minh Toan;木村 正人;大塚 厚二;Hiroyuki Osaka;Hiroyuki Osaka;畔上 秀幸;Hiroyuki Osaka;大塚 厚二;Hiroyuki Osaka;K. Ohtsuka;Hiroyuki Osaka;H.Azegami;Hiroyuki Osaka;大塚 厚二;Hiroyuki Osaka;K. Ohtsuka - 通讯作者:
K. Ohtsuka
Comoving mesh method:移動境界問題に対する汎用型有限要素法
共动网格法:移动边界问题的通用有限元方法
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
砂山 洋祐;木村 正人;Rabago Julius Fergy - 通讯作者:
Rabago Julius Fergy
木村 正人的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('木村 正人', 18)}}的其他基金
New trends of energy gradient flow: mathematical aspects and various phenomena and applications
能量梯度流新趋势:数学方面和各种现象及应用
- 批准号:
20KK0058 - 财政年份:2020
- 资助金额:
$ 1.28万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
転位ダイナミクスと塑性モデルの数学解析
位错动力学和塑性模型的数学分析
- 批准号:
15F15019 - 财政年份:2015
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
自由境界問題の離散化手法の新展開
自由边界问题离散化方法的新进展
- 批准号:
16654024 - 财政年份:2004
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Exploratory Research
アダプティブメッシュ有限要素法による自由境界及び内部遷移層の数値解析
使用自适应网格有限元法对自由边界和内部过渡层进行数值分析
- 批准号:
13740070 - 财政年份:2001
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
レベルセット法による移動境界問題の数値解析
水平集法对移动边界问题的数值分析
- 批准号:
11740067 - 财政年份:1999
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
微小血管閉塞による新しい進行性腎不全モデルの確立と尿細管間質病変の解析
微血管闭塞进行性肾衰竭新模型的建立及肾小管间质病变分析
- 批准号:
08877180 - 财政年份:1997
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Exploratory Research
SLE 自然発症マウスにおける単核球貧食系機能とメサンギウム増殖刺激作用
自发性SLE小鼠单核细胞吞噬系统功能及系膜增殖刺激作用
- 批准号:
60770480 - 财政年份:1985
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
カオジロショウジョウバエ類2種の島個体群における適応戦略の分化
两种果蝇岛屿种群适应策略的差异
- 批准号:
59740315 - 财政年份:1984
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
マウスのループス腎炎における単球系細胞の糸球体障害作用とその防止
单核细胞对小鼠狼疮性肾炎肾小球病变的影响及其预防
- 批准号:
59770444 - 财政年份:1984
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
ショウジョウバエの気候適応におよぼす qene flow の影響
qene流对果蝇气候适应的影响
- 批准号:
58740300 - 财政年份:1983
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
界面方程式の自由境界問題における特異性をもつ進行波面の研究
界面方程自由边界问题中奇点行波前的研究
- 批准号:
22KJ2849 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
完全非線形偏微分方程式とその自由境界問題に対する理論と応用
完全非线性偏微分方程及其自由边界问题的理论与应用
- 批准号:
22K13944 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
非有界領域におけるナビエ・ストークス方程式の自由境界問題
无界域纳维-斯托克斯方程的自由边界问题
- 批准号:
22K13945 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
多孔質媒体内の階層的変化を記述する偏微分方程式と自由境界問題の連立系の研究
描述多孔介质层次变化的偏微分方程和自由边界问题耦合系统的研究
- 批准号:
20K03704 - 财政年份:2020
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Free boundary problem of compressible-incompressible viscous two-phase flows with phase transitions in unbounded domains
无界域中具有相变的可压缩-不可压缩粘性两相流的自由边界问题
- 批准号:
19J10168 - 财政年份:2019
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Navier-Stokes方程式の自由境界問題の解のダイナミクスの数学解析
纳维-斯托克斯方程自由边界问题解动力学的数学分析
- 批准号:
18J01068 - 财政年份:2018
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
圧縮性Navier-Stokes方程式の自由境界問題の解の安定性解析
可压缩纳维-斯托克斯方程自由边界问题解的稳定性分析
- 批准号:
17H07160 - 财政年份:2017
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
反応拡散系の特異極限と自由境界問題の数理構造の解明
反应扩散系统的奇异极限和自由边界问题的数学结构的阐明
- 批准号:
16J07001 - 财政年份:2016
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
個体拡散モデルに関係する非線形拡散方程式の自由境界問題の可解性と解の漸近挙動
与固体扩散模型相关的非线性扩散方程的自由边界问题的可解性和解的渐近行为
- 批准号:
14J07046 - 财政年份:2014
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Traveling waves of a free boundary problem related to amoeba motility
与阿米巴运动相关的自由边界问题的行波
- 批准号:
24840039 - 财政年份:2012
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




