Systems of differential equations attached to representations of Lie groups
附加到李群表示的微分方程组
基本信息
- 批准号:12440034
- 负责人:
- 金额:$ 5.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)The annihilator of the generalized Verma module of the scalar type for a reductive Lie algebra is invesitigated. The condition that the annihilator gives the gap between the generalized Verma module and the usual Verma module is clearified and its necessary and sufficient condition is shown when its highest weight is dominant. Moreover a good sufficient condition is obtained in general.(2)By the dual map of the faithful finite dimensional representation of the reductive Lie algebra and its infinite dimensional representation, the characteristic polynomials and minimal polynomials of matrices are defined and the generator system of the annihilators of generalized Verma modules of scalar type is constracted., A sufficient condition that the ideal gives the gap is applied to some problems in the integral geometry.(3)Fatou's theorems and Hardy-type spaces on a Riemannian symmetric space of the noncompact type for the general eigenvalue of the invariant differential operators are studied in general. These theorems can be localized only when the rank of the space is equals to one.(4)On a compactification of a Euclidean space defined by a root lattice of the classical type, Shrodinger operators are classified which allow commuting differential operators of the forth order under the condition that their potentials are meromorphic at an infinite point.(5)The totality of k-dimensional linear subspaces of n-dimensional spaces over R, C or H is the Grassmannian manifold. The Radon transforms on these Grassmannian manifolds naturally extend the Gelfand-Aomoto's theory of generalized hypergeometric functions. Twisted Radon transforms over totally geodesic submanifolds are studied and interesting examples are given whose images are characterized by differential equations.
(1)研究了约化李代数标量型广义Verma模的湮灭子。澄清了湮灭子给出广义Verma模与一般Verma模之间存在差距的条件,并给出了其最高权占主导时的充要条件。并在一般情况下得到了一个较好的充分条件。(2)通过还原李代数的忠实有限维表示及其无限维表示的对偶映射,定义了矩阵的特征多项式和极小多项式,构造了标量型广义Verma模的湮灭子的生成系统。将理想给出间隙的一个充分条件应用于积分几何中的一些问题。(3)一般研究了非紧型黎曼对称空间上不变微分算子一般特征值的Fatou定理和hardy型空间。只有当空间的秩等于1时,这些定理才能局域化。(4)在由经典型根格定义的欧几里得空间的紧化上,给出了允许交换四阶微分算子的Shrodinger算子的分类,其势在无限点处是亚纯的。(5) R、C或H上n维空间的k维线性子空间的总和是格拉斯曼流形。这些格拉斯曼流形上的Radon变换自然地扩展了Gelfand-Aomoto的广义超几何函数理论。研究了全测地线子流形上的扭曲Radon变换,并给出了用微分方程表征其图像的有趣例子。
项目成果
期刊论文数量(150)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Kurokawa, H.Ochiai, M.Wakayama: "Multiple trigonometry and zeta functions"J. Ramanujan Math. Soc. 17. 101-113 (2002)
N.Kurokawa、H.Ochiai、M.Wakayama:“多重三角函数和 zeta 函数”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Salem Ben Said, T.Oshima, N.Shimeno: "Fatou's theorems and Hardy-type spaces for eigenfunctions of the invariant differential operators on symmetric spaces"Intern.Math.Research Notice. 16. 915-931 (2003)
Salem Ben Said、T.Oshima、N.Shimeno:“对称空间上不变微分算子的本征函数的 Fatou 定理和 Hardy 型空间”Intern.Math.Research 通知。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshio Oshima: "A quantization of conjugacy classes of matrices"Advances in Math.. (to appear).
Toshio Oshima:“矩阵共轭类的量化”数学进展..(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiyuki Kobayashi: "Introduction to actions of discrete groups on pseudo-Riemannian homogeneous manifolds"Acta Appl.Math.. 73. 113-131 (2002)
Toshiyuki Kobayashi:“伪黎曼齐次流形上离散群的作用简介”Acta Appl.Math.. 73. 113-131 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiyuki Kobayashi, S.Nasrin: "Multiplicity one theorem in the orbit method"Amer.Math.Soc.Transl, Advances in the Mathematical Sciences, Series 2. 210. 161-169 (2003)
Toshiyuki Kobayashi, S.Nasrin:“轨道方法中的多重性一定理”Amer.Math.Soc.Transl,数学科学进展,系列 2. 210. 161-169 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OSHIMA Toshio其他文献
OSHIMA Toshio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OSHIMA Toshio', 18)}}的其他基金
Study of group representation and differential equations associated with root systems and its applications
与根系相关的群表示和微分方程研究及其应用
- 批准号:
20244008 - 财政年份:2008
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Systems of differential equations with group actions and their applications
具有群作用的微分方程组及其应用
- 批准号:
16340034 - 财政年份:2004
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Differential equations on homogeneous spaces
齐次空间上的微分方程
- 批准号:
09440048 - 财政年份:1997
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systems of differential equations invariant under an action of a group
群作用下不变的微分方程组
- 批准号:
05452010 - 财政年份:1993
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Measurement of Surface Properties on Fine Ground Product by Laser-Raman Spectrum
激光拉曼光谱测量细磨产品的表面特性
- 批准号:
01550749 - 财政年份:1989
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Harmonic Analysis on Symmetric Spaces
对称空间的调和分析
- 批准号:
62460004 - 财政年份:1987
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)














{{item.name}}会员




