Computability and Complexity in Constructive Mathematics
构造数学中的可计算性和复杂性
基本信息
- 批准号:15500005
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
From 2003 to 2006, for 4 years, we have done a research on computability and complexity in constructive mathematics. During the research, we have got some important and better understandings on the subject. One of the most important understanding is that computability and complexity in constructive mathematics can be dealt with better within a more general framework of constructive reverse mathematics. Moreover, progress in constructive mathematics, such as constructive set theory and topology in constructive mathematics, has produced new problems in computability and complexity in constructive mathematics, and in constructive reverse mathematics.In this research project, we have proposed a new framework of constructive reverse mathematics. We have investigated relationship between Brouwer's fan theorem and weak Koenig's lemma, with Dr. Josef Berger, and computability in these theorems. With Professor Peter Aczel, Dr. Laura Crosilla, Professor Erik Palmgren, and Associate Professor Peter Schuster, we have dealt with a problem of constructive reverse mathematics in the constructive Zermelo-Fraenkel set theory. Concerning topology in constructive mathematics, we have worked on constructions of quotient topologies in constructive set theory and type theory, with Professor Erik Palmgren, and on quasi-apartness and neighbourhood spaces, with Professor Ray Mines, Associate Professor Peter Schuster and Dr. Luminita Vita. Furthermore, we have treated computational complexity in constructive theory of real numbers and the constructive intermediate value theorem, and a constructive version of Banach's inverse mapping theorem in F-spaces as an application of Baire's theorem.Further research project is putting research in constructive reverse mathematics forward with progress in constructive mathematics such as constructive set theory and constructive topology.
从2003年到2006年,我们对构造数学的可计算性和复杂性进行了四年的研究。在研究过程中,我们对这一课题有了一些重要的认识。最重要的理解之一是,构造性数学中的可计算性和复杂性可以在构造性逆向数学的更一般框架内更好地处理。此外,随着构造性数学的发展,如构造性数学中的构造集合论和拓扑学,在构造性数学的可计算性和复杂性以及构造性逆数学中产生了新的问题,在本研究项目中,我们提出了一个新的构造性逆数学框架。本文研究了Brouwer扇定理与弱Koenig引理之间的关系,以及这些定理的可计算性。与Peter Aczel教授、Laura Crosilla博士、Erik Palmgren教授和Peter Schuster副教授一起,我们处理了构造性Zermelo-Fraenkel集合论中的构造性逆向数学问题。关于拓扑结构在建设性数学,我们曾在建设性的集理论和类型理论的商拓扑结构,与埃里克Palmgren教授,并在准apartness和邻域空间,与雷矿山教授,副教授彼得舒斯特和博士Luminita维塔。在此基础上,我们讨论了真实的数的构造性理论和构造性中值定理的计算复杂性,以及作为Baire定理应用的F-空间中的Banach逆映射定理的构造性版本,进一步的研究计划是随着构造性数学如构造性集合论和构造性拓扑学的进展,推进构造性逆数学的研究。
项目成果
期刊论文数量(79)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Piano Duo Support System for Parents to Lead Children to Practice Musical Performances
家长带领孩子练习钢琴二重奏支持系统
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Chika Oshima;Kazushi Nishimoto;Norihiro Hagita
- 通讯作者:Norihiro Hagita
Quasi-apartness and neighbourhood spaces
准公寓和邻里空间
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Y.Yamaguchi;F.Takagi;K.Yamashita;H.Shimizu;H.Maeda;K.-I.Sotowa;K.Kusakabe;Y.Yamasaki;S.Morooka;T.Watanabe;Hajime Ishihara
- 通讯作者:Hajime Ishihara
Unique existence and computability in constructive reverse mathematics
构造性逆向数学中的独特存在性和可计算性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:A.Ito;K.Inoue;Y.Wang;Michiro Kondo;大木 憲二;Hajime Ishihara
- 通讯作者:Hajime Ishihara
The expansion of "score" as an inspiring interface for musical performers
“乐谱”的扩展作为音乐表演者的鼓舞人心的界面
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Homei Miyashita;Kazushi Nishimoto
- 通讯作者:Kazushi Nishimoto
Binary refinement implies discrete exponentiation
二进制细化意味着离散求幂
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:櫻井;草刈;西田;酒井;坂部;Peter Aczel
- 通讯作者:Peter Aczel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIHARA Hajime其他文献
ISHIHARA Hajime的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIHARA Hajime', 18)}}的其他基金
A study of sheaf models in constructive reverse mathematics
构造逆向数学中的层模型研究
- 批准号:
16K05251 - 财政年份:2016
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A regional policy theory study on the formulation of Land Use Plans based on Basic Law for Urban Agriculture Promotion
基于都市农业促进基本法的土地利用规划制定区域政策理论研究
- 批准号:
15H06741 - 财政年份:2015
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Theoretical study of the conversion mechanism between infrared incoherent sunlight and visible coherent light
红外非相干太阳光与可见相干光转换机理的理论研究
- 批准号:
15K13505 - 财政年份:2015
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Theoretical study of unconventional nonlinear excitation processes of quantum mechanically coupled antenna - nanostructure systems
量子机械耦合天线-纳米结构系统非常规非线性激励过程的理论研究
- 批准号:
25610077 - 财政年份:2013
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Proposal of novel scheme forphoton-energy harvesting and conversion based on the photosynthesis antenna systems
提出基于光合作用天线系统的光子能量收集和转换的新方案
- 批准号:
23654105 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study of novel photonic functions in nano-to-bulk crossover regime
纳米与块体交叉体系中新型光子功能的研究
- 批准号:
21340085 - 财政年份:2009
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reverse Mathematics in Constructive Mathematics
构造数学中的逆向数学
- 批准号:
19500012 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical study of photo-functions of polymer system with nanoscale polarization orientational structure
纳米级偏振取向结构聚合物体系光功能的理论研究
- 批准号:
16540286 - 财政年份:2004
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of size dependence of optical response due to nanoscale spatial structure of the response field
由于响应场的纳米级空间结构而研究光学响应的尺寸依赖性
- 批准号:
14540301 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Research of Optical Pulse Response of Quantum Confined Excitons
量子约束激子光脉冲响应的理论研究
- 批准号:
09640396 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
- 批准号:
2348891 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
- 批准号:
2348792 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Descriptive Set Theory and Computability
描述性集合论和可计算性
- 批准号:
2348208 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
New Developments in the Philosophical Foundations of Computability Theory
可计算性理论哲学基础的新进展
- 批准号:
22KF0258 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152098 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152095 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152182 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152262 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




