Study of solution space of nonlinear partial differential equations

非线性偏微分方程解空间的研究

基本信息

  • 批准号:
    08640223
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1998
  • 项目状态:
    已结题

项目摘要

1. We study the Emden-Fowler equation, which is one of partial differential equations of elliptic type, in a ball or annulus of <planck's constant>-dimensional Euclid space. Let C be a closed subgroup of the orthogonal group 0(<planck's constant>). A solution mu(x) of the equation is called G invariant if mu is invariant under G action. Any radial solution becomes G invariant. The converse problem is considered. The group G is a transformation group on the unit sphere because G is a subgroup of the orthogonal group. We prove that there exists a G invariant non-radial solution if and only if G is not transitive on the unit sphere. This result is proved by using variational method, functional analysis, Lie transformation group and Sturm-Liouville theory of ordinary differential2. We study the Keller-Segel equation which is a mathematical model to describe a cellular slime having the oriented movement.(1)A parabolic system which is a simplification of the Keller-Segel equation is considered. When a sensitive function is linear and the space dimension is two, the asymptotic behavior of a blow-up solution is investigated in detail.(2)It is proved that a radial solution blows up as its L^1 density concentrates at the origin.(3)The L^1 total mass of a solution is chosen as a parameter. Then the existence and non existence results of non-constant stationary solutions are obtained by using the parameter.
1。我们研究emden-fowler方程,这是椭圆类型的部分微分方程之一,在<planck的常数>维二维欧几里得空间中。令C为正交组0的封闭子组(<Planck的常数>)。如果MU在G动作下不变,则方程的溶液MU(X)称为G不变。任何径向溶液都会变不变。考虑了相反的问题。 G组是单位球体上的转换组,因为G是正交组的子组。我们证明,只有当G在单位球体上不传递G时,就存在G不变的非辐射解。通过使用变分方法,功能分析,谎言转化组和普通差分理论的Sturm-liouville理论证明了这一结果。我们研究了凯勒 - 塞格方程,这是一个数学模型,用于描述具有方向运动的细胞粘液。(1)抛物线系统是简化凯勒 - 塞格方程的简化。当灵敏的函数是线性的,空间维度为两个时,详细研究了爆炸溶液的渐近行为。(2)证明,径向溶液将其l^1密度浓缩在原点上爆炸。(3)溶液的l^1总质量被选为一个参数。然后,使用参数获得了非固定固定溶液的存在和非存在结果。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Nagai: "Keller-Segel system and the concentration lemma." Surikaisekikenkyusho Kokyuruku. 1025. 75-80 (1998)
T.Nagai:“Keller-Segel 系统和浓度引理。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Kajikiya: "Existence of group invariant solutions of a certain semilinear elliptic equation." Proceedings of the Ninth International Colloquium on Differential Equations. (In printing).
R.Kajikiya:“某个半线性椭圆方程群不变解的存在性。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nagai: "Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis" Advances in Mathematical Sciences and Applications. (発表予定).
T. Nagai:“趋化抛物线椭圆系统的径向解的全局存在和爆炸”数学科学与应用进展(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nagai: "Global existence of solutions to the parabolic systems of chemotaxis" Surikaisekikenkyusyo Kokyuroku. 1009. 22-28 (1997)
T.Nagai:“趋化抛物线系统解决方案的全球存在” Surikaisekikenkyusyo Kokyuroku。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Kajikiya: "Existence of group invariant solutions of a certain semilinear elliptic equation" Proceedings of the Ninth International Colloquium on Dfferential Equations. (印刷中).
R. Kajikiya:“某个半线性椭圆方程的群不变解的存在”第九届国际微分方程研讨会论文集(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAJIKIYA Ryuji其他文献

KAJIKIYA Ryuji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAJIKIYA Ryuji', 18)}}的其他基金

Structure of solution spaces for singular partial differential equations.
奇异偏微分方程解空间的结构。
  • 批准号:
    20540197
  • 财政年份:
    2008
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiple existence and structure of solutions for semilinear elliptic equations.
半线性椭圆方程解的多重存在性和结构。
  • 批准号:
    16540179
  • 财政年份:
    2004
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative theory of solutions for semilinear elliptic partial differential equations
半线性椭圆偏微分方程解的定性理论
  • 批准号:
    12640197
  • 财政年份:
    2000
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Multisymplectic Geometry and Geometric Numerical Integrator for Variational Problems
变分问题的多辛几何和几何数值积分器
  • 批准号:
    20K14365
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on prehomogeneous vector spaces and micro-local analysis
预齐次向量空间与微观局部分析研究
  • 批准号:
    15340042
  • 财政年份:
    2003
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Qualitative theory of solutions for semilinear elliptic partial differential equations
半线性椭圆偏微分方程解的定性理论
  • 批准号:
    12640197
  • 财政年份:
    2000
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了