Sum formulas for arithmetical functions and mean value theorem for the zeta functions
算术函数的求和公式以及 zeta 函数的中值定理
基本信息
- 批准号:11640022
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Riemann zeta-function, the Dirichlet L-fucntion and other Dirichlet series have a long history of researches. They are still the main oobjects of researches at present day, since many important number theoretic properties are reflected in the analytic properties of Dirichlet series, such as the analtic continuation, functional equation, the place of poles and their residues.To study the detailed local behavior of zeta function, Kiuchi and Tanigawa derived mean value theorem for short intervals for E_σ (T)(=the error term of the mean square formula of ζ^2 (σ+it) and R (σ+it)(=the remainder term of the approximate functional equation of ζ^2 (s)). We also studied the mean value of eror term arising from the Dirichlet divisor problem with characters.Akiyama and Tanigawa considered the L-function associated to elliptic curves. In order to compute the numerical values, we derived the approximate functional equation with incomplete gamma functions. Using our formula, we checked that the Riemann hypothesis holds in the range Im (s) 【less than or equal】400 for several elliptic curves. Furthermore, we studied the relation between Sate-Tate conjecture and the Riemann hypothesis.The above mentioned functional equation is related to the modular relation. Kanemitsu, Yoshimoto and Tanigawa reconstruct many results related to the Ramanujan formulas from the point of modular relations. The new formula for ζ(2/3) of Ramanujan type is also obtained.The analytic continuation of Euler-Zagier's multiple zeta-function was established by Akiyama, Egami and Tanigawa. We noted for the first time that the points of indeterminacy appear for this function. We also computes the zeta-values at non-positive integers.
Riemann Zeta功能,Dirichlet L-Fucntion和其他Dirichlet系列具有悠久的研究历史。它们仍然是当今研究的主要原理,因为许多重要数量的理论特性反映在Dirichlet系列的分析特性中,例如Dirichlet系列的分析特性,例如隔离延续,功能等效性,杆子的位置及其残留的位置及其残留物。研究ZETA功能的详细局部行为,Zeta功能的均值,kiuchi和Tanigawa的均值(tanigawa for tem sere for)的均值(=)= for e_ for(= ζ^2(σ+IT)和R(σ+IT)(=ζ^2(s)的近似功能方程式),我们还研究了由字符的dirichlet分隔术引起的EROR项的平均值。使用我们的公式,我们检查了riemann假设在几个椭圆曲线的范围内(小于或相等)400。上述功能方程与模块化关系有关。 Kanemitsu,Yoshimoto和Tanigawa从模块化关系点重建了与Ramanujan公式有关的许多结果。还获得了Ramanujan类型的ζ(2/3)的新公式。我们首次注意到此功能的不确定性外观点。我们还计算非阳性整数处的Zeta值。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Ivic,K.Matsumoto and Y.Tanigawa: "On Riesz means of the coefficients of the Rankin-Selberg series"Math.Proc.Camb Phil Soc.. 127. 117-131 (1999)
A.Ivic、K.Matsumoto 和 Y.Tanikawa:“论 Rankin-Selberg 级数系数的 Riesz 均值”Math.Proc.Camb Phil Soc.. 127. 117-131 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Akiyama,S.Egami and Y.Tanigawa: "Analytic continuation of multiple zeta functions and their values at non-positive in-tegers"Acta Arith.. (to appear).
S.Akiyama、S.Egami 和 Y.Tanikawa:“多个 zeta 函数及其在非正整数处的值的解析延拓”Acta Arith..(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I..Kiuchi and Y.Tanigawa: "The mean value theorem of the Riemann Zeta-function in the critical strip for short intervals"Number Theory and its Applications (ed.by Gyery and Kanemitsu). 231-240 (1999)
I..Kiuchi 和 Y.Tanikawa:“短区间临界带中黎曼 Zeta 函数的均值定理”数论及其应用(由 Gyery 和 Kanemitsu 编辑)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Akiyama and Y.Tanigawa: "Calculation of values of L-functions associated to elliptic curves"Mathematics of Computation. 68. 1201-1231 (1999)
S.Akiyama 和 Y.Tanikawa:“与椭圆曲线相关的 L 函数值的计算”计算数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Akiyama, S.Egami and Y.Tanigawa: "Analytic continuation of multiple zeta functions and their values at non-positive integers"Acta Arith.. (to appear).
S.Akiyama、S.Egami 和 Y.Tanikawa:“多个 zeta 函数及其非正整数值的解析延拓”Acta Arith..(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANIGAWA Yoshio其他文献
TANIGAWA Yoshio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANIGAWA Yoshio', 18)}}的其他基金
On analytic behaviour of zeta-function and its applications to the arithmetical error term
Zeta 函数的解析行为及其在算术误差项中的应用
- 批准号:
24540015 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytic properties of the error term arising from the arithmetical problems
算术问题产生的误差项的解析性质
- 批准号:
21540012 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Beneath on analytic properties ofvarious zeta-functions
下面是各种 zeta 函数的解析性质
- 批准号:
17540022 - 财政年份:2005
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the special values of various zeta functions
各种zeta函数特殊值的研究
- 批准号:
14540021 - 财政年份:2002
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimate of the sum of arithmetical functions and its applications to L functions
算术函数之和的估计及其在 L 函数中的应用
- 批准号:
09640026 - 财政年份:1997
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Mean values and Asymptotic Behavior on Arithmetical Functions
算术函数的平均值和渐近行为
- 批准号:
10640029 - 财政年份:1998
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimate of the sum of arithmetical functions and its applications to L functions
算术函数之和的估计及其在 L 函数中的应用
- 批准号:
09640026 - 财政年份:1997
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)