Constructions and decompositions of induced representations of solvable Lie groups and their applications

可解李群的诱导表示的构造与分解及其应用

基本信息

  • 批准号:
    12640178
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

Holomorphically induced representations of a Lie group are usually constructed starting from a real linear from f of the Lie algebra and a complex polarization at f. In this research, I investigated holomorphically-induced representations of solvable Lie groups from weak polarizations or general complex subalgebra n.First of all, let G be a connected and simply connected Lie group whose Lie algebra is a normal j-algebra. When f belongs to an open coadjoint G-orbit and n is a positive weak polarization at f, the holomorphically-induced representation of G is non-zero if some term o defined by the modular function is suitably chosen. It decomposes into a direct sum of irreducible representations, which is described by the orbit method. In the course of this research, I reviewed and checked again the term o above and the construction of intertwining operators using algebraic structures of normal j-algebras. I revised the paper of the results above, and it has been published.I investigated some cases for low-dimensional exponential groups G and weak polarizations or complex subalgebras n which are isotropic (not necessarily maximally isotropic) for f. In some cases, I actually obtained non-zero representations and decompositions of them. The descriptions of semi-invariant vectors, which are used in computations, essentially depend on each algebraic structure of Lie algebras. I will try to find better descriptions suitable for treating a general setting in further study.For irreducible representations of exponential groups, I also treated another problem to find "good" operators or "good" subspaces of representation spaces which are compatible with the Fourier transforms. I have tried to characterize "good" subspaces by using "smooth operators" introduced by Ludwig, and I plan to proceed with it in further research.
谎言基团的全态诱导表示形式通常是从lie代数的F的真实线性开始构建的,在f处构建复杂的极化。在这项研究中,我调查了来自弱极化或一般复杂的子代数n.fir的可溶剂谎言组的霍明型诱导的表示,让G为一个连接的,简单地连接的谎言组,其谎言代数为正常的J-代数。当F属于开放式连接G-orbit,而N是F处的正弱极化,如果适当选择模块化函数定义的某些项O定义的某些项O,则holomor形诱导的g表示为零。它分解为直接的不可约表示总和,这是通过轨道方法描述的。在这项研究的过程中,我使用正常J-Algebras的代数结构进行了审查并再次检查上述术语O和交织运算符的构建。我修改了上述结果的论文,并已发表。我研究了一些低维指数组G和弱极化或复杂的亚地骨N的病例,这些案例是f的各向同性(不一定是最大的)。在某些情况下,我实际上获得了它们的非零表示和分解。在计算中使用的半不变矢量的描述基本上取决于lie代数的每个代数结构。我将尝试找到适合在进一步研究中处理一般环境的更好的描述。对于指数式群体的不可约表示,我还将另一个问题处理,以找到与傅立叶变换兼容的代表空间的“良好”操作员或“良好”子空间。我试图通过使用路德维希(Ludwig)引入的“平滑运算符”来表征“良好”子空间,并计划在进一步的研究中继续进行。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Junko Inoue: "Holomorphically induced representations of some solvable Lie groups"J. Funct. Anal.. 186. 269-328 (2001)
Junko Inoue:“一些可解李群的全纯诱导表示”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Junko Inoue: "Holomorphically induced representations of some solvable Lie groups"J.Funct.Anal.. 186. 269-328 (2001)
Junko Inoue:“一些可解李群的全纯诱导表示”J.Funct.Anal.. 186. 269-328 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Junko Inoue: "Holomorphically induced representations of solvable Lie groups"Journal of Functional Analysis. (掲載予定).
Junko Inoue:“可解李群的全纯诱导表示”《泛函分析杂志》(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Junko Inoue: "Holomorphically induced representations of some solvable Lie groups"Journal of Functional Analysis. 186. 269-328 (2001)
Junko Inoue:“一些可解李群的全纯诱导表示”泛函分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

INOUE Junko其他文献

INOUE Junko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('INOUE Junko', 18)}}的其他基金

Constructions of representations of solvable Lie groups and non-commutative Fourier analysis
可解李群表示的构造和非交换傅里叶分析
  • 批准号:
    21540180
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
  • 批准号:
    15540171
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Induced representations of solvable Lie groups and their applications
可解李群的归纳表示及其应用
  • 批准号:
    10640177
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Low-dimensional representation and sensor based estimation of bluff body wakes and vortex induced vibrations
钝体尾流和涡激振动的低维表示和基于传感器的估计
  • 批准号:
    RGPIN-2022-03848
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Study of induced representation of reductive Lie groups and Lie algebras
还原李群和李代数的诱导表示研究
  • 批准号:
    18K03322
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Language-induced event-representation: competition and multiple object instantiation
语言引发的事件表示:竞争和多对象实例化
  • 批准号:
    ES/I000739/1
  • 财政年份:
    2011
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Research Grant
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
  • 批准号:
    15540171
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gray-code representation of real number and the induced computability structure
实数的格雷码表示和导出的可计算性结构
  • 批准号:
    15500010
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了