Constructions and decompositions of induced representations of solvable Lie groups and their applications
可解李群的诱导表示的构造与分解及其应用
基本信息
- 批准号:12640178
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Holomorphically induced representations of a Lie group are usually constructed starting from a real linear from f of the Lie algebra and a complex polarization at f. In this research, I investigated holomorphically-induced representations of solvable Lie groups from weak polarizations or general complex subalgebra n.First of all, let G be a connected and simply connected Lie group whose Lie algebra is a normal j-algebra. When f belongs to an open coadjoint G-orbit and n is a positive weak polarization at f, the holomorphically-induced representation of G is non-zero if some term o defined by the modular function is suitably chosen. It decomposes into a direct sum of irreducible representations, which is described by the orbit method. In the course of this research, I reviewed and checked again the term o above and the construction of intertwining operators using algebraic structures of normal j-algebras. I revised the paper of the results above, and it has been published.I investigated some cases for low-dimensional exponential groups G and weak polarizations or complex subalgebras n which are isotropic (not necessarily maximally isotropic) for f. In some cases, I actually obtained non-zero representations and decompositions of them. The descriptions of semi-invariant vectors, which are used in computations, essentially depend on each algebraic structure of Lie algebras. I will try to find better descriptions suitable for treating a general setting in further study.For irreducible representations of exponential groups, I also treated another problem to find "good" operators or "good" subspaces of representation spaces which are compatible with the Fourier transforms. I have tried to characterize "good" subspaces by using "smooth operators" introduced by Ludwig, and I plan to proceed with it in further research.
谎言基团的全态诱导表示形式通常是从lie代数的F的真实线性开始构建的,在f处构建复杂的极化。在这项研究中,我调查了来自弱极化或一般复杂的子代数n.fir的可溶剂谎言组的霍明型诱导的表示,让G为一个连接的,简单地连接的谎言组,其谎言代数为正常的J-代数。当F属于开放式连接G-orbit,而N是F处的正弱极化,如果适当选择模块化函数定义的某些项O定义的某些项O,则holomor形诱导的g表示为零。它分解为直接的不可约表示总和,这是通过轨道方法描述的。在这项研究的过程中,我使用正常J-Algebras的代数结构进行了审查并再次检查上述术语O和交织运算符的构建。我修改了上述结果的论文,并已发表。我研究了一些低维指数组G和弱极化或复杂的亚地骨N的病例,这些案例是f的各向同性(不一定是最大的)。在某些情况下,我实际上获得了它们的非零表示和分解。在计算中使用的半不变矢量的描述基本上取决于lie代数的每个代数结构。我将尝试找到适合在进一步研究中处理一般环境的更好的描述。对于指数式群体的不可约表示,我还将另一个问题处理,以找到与傅立叶变换兼容的代表空间的“良好”操作员或“良好”子空间。我试图通过使用路德维希(Ludwig)引入的“平滑运算符”来表征“良好”子空间,并计划在进一步的研究中继续进行。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Junko Inoue: "Holomorphically induced representations of some solvable Lie groups"J. Funct. Anal.. 186. 269-328 (2001)
Junko Inoue:“一些可解李群的全纯诱导表示”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Junko Inoue: "Holomorphically induced representations of some solvable Lie groups"J.Funct.Anal.. 186. 269-328 (2001)
Junko Inoue:“一些可解李群的全纯诱导表示”J.Funct.Anal.. 186. 269-328 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Junko Inoue: "Holomorphically induced representations of solvable Lie groups"Journal of Functional Analysis. (掲載予定).
Junko Inoue:“可解李群的全纯诱导表示”《泛函分析杂志》(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Junko Inoue: "Holomorphically induced representations of some solvable Lie groups"Journal of Functional Analysis. 186. 269-328 (2001)
Junko Inoue:“一些可解李群的全纯诱导表示”泛函分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INOUE Junko其他文献
INOUE Junko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INOUE Junko', 18)}}的其他基金
Constructions of representations of solvable Lie groups and non-commutative Fourier analysis
可解李群表示的构造和非交换傅里叶分析
- 批准号:
21540180 - 财政年份:2009
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
- 批准号:
15540171 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Induced representations of solvable Lie groups and their applications
可解李群的归纳表示及其应用
- 批准号:
10640177 - 财政年份:1998
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Low-dimensional representation and sensor based estimation of bluff body wakes and vortex induced vibrations
钝体尾流和涡激振动的低维表示和基于传感器的估计
- 批准号:
RGPIN-2022-03848 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Grants Program - Individual
Study of induced representation of reductive Lie groups and Lie algebras
还原李群和李代数的诱导表示研究
- 批准号:
18K03322 - 财政年份:2018
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Language-induced event-representation: competition and multiple object instantiation
语言引发的事件表示:竞争和多对象实例化
- 批准号:
ES/I000739/1 - 财政年份:2011
- 资助金额:
$ 1.41万 - 项目类别:
Research Grant
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
- 批准号:
15540171 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gray-code representation of real number and the induced computability structure
实数的格雷码表示和导出的可计算性结构
- 批准号:
15500010 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)