A novel experimental model of chronic stress and hypertension for studying dementia-related neurovascular dysfunction in the hippocampus
用于研究海马痴呆相关神经血管功能障碍的新型慢性应激和高血压实验模型
基本信息
- 批准号:10194742
- 负责人:
- 金额:$ 15.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAffinityAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAnimal ModelAnimalsArchitectureAstrocytesBlood - brain barrier anatomyBlood PressureBlood VesselsBlood capillariesBrainBrain DiseasesBrain regionBrain-Derived Neurotrophic FactorCardiovascular DiseasesCardiovascular systemCerebrovascular DisordersCharacteristicsChronicChronic stressCommunicationComplexDementiaDevelopmentDown-RegulationEndothelial CellsEndotheliumEtiologyEventExperimental ModelsFunctional disorderGene ExpressionGlucocorticoidsHippocampus (Brain)HumanHypertensionHypothalamic structureImageImaging DeviceImpairmentInvestigationKnowledgeLaboratoriesLearningMediatingMediator of activation proteinMemoryMetabotropic Glutamate ReceptorsMicrovascular DysfunctionModelingMusMuscle relaxation phaseNeurogliaNeuronsNeurosecretory SystemsNeurotrophic Tyrosine Kinase Receptor Type 2Nitric OxidePathway interactionsPlasmaPlayPotassium ChannelPrevalenceProcessProtein IsoformsRegulationResistanceRoleSignal TransductionSliceStressStructureSympathetic Nervous SystemSynapsesSystemTechniquesTestingVascular DiseasesVascular Smooth MuscleVasodilator AgentsViral Vectoranalytical toolarteriolebiological adaptation to stressblood perfusionblood-brain barrier functioncardiovascular risk factorcerebrovasculardensityeffective therapyexperiencehypothalamic-pituitary-adrenal axismouse modelneurovascularneurovascular unitnoveloverexpressionparaventricular nucleuspsychologicresponsesocial stresssynaptic function
项目摘要
Project summary
Small vessel diseases of the brain (SVDs) together with Alzheimer’s disease (AD) are the major causes of
dementia. The prevalence of AD and related dementias is increasing worldwide, and the development of effective
treatments is hampered by an inadequate understanding of the underlying pathophysiological mechanisms.
Psychological/social stress and associated hypertension are major drivers of brain vascular dysfunction, which
leads to impaired blood perfusion and compromised blood brain barrier (BBB) integrity in specific brain regions,
notably including the hippocampus. However, developing an animal model that captures the pathophysiological
aspects of the continuous, relentless stress experienced by humans has proven difficult. Here, we propose to
characterize a novel experimental model – the PVN-BDNF model – that addresses this problem and allows
investigation of chronic stress-related neuro-glial-vascular dysfunction in the hippocampus, a highly relevant
brain region in AD pathophysiology. This model uses viral vectors to drive long-term overexpression of brain-
derived neurotrophic factor (BDNF) in the paraventricular nucleus of the hypothalamus (PVN). Although BDNF
in the hippocampus has traditionally been considered beneficial owing to its role in learning and memory, BDNF
in the PVN plays a central, but less-appreciated, role in stimulating both major stress pathways – the sympathetic
nervous system and the hypothalamic-pituitary-adrenal (HPA) axis – resulting in chronically elevated blood
pressure and plasma glucocorticoid levels. High plasma glucocorticoid levels in turn downregulate hippocampal
BDNF levels; thus, the PVN-BDNF model recreates the imbalance in hypothalamic (increased) and hippocampal
(decreased) BDNF expression characteristic of neuroendocrine stress responses. Hypertension and elevated
glucocorticoids exert detrimental effects on cerebrovascular function by impeding communication within the
neurovascular unit (NVU), a functionally and structurally complex system in which glial cells (mainly astrocytes)
relay information between neurons and the surrounding vasculature to support neuronal and synaptic function.
Accordingly, disruption of NVU mechanisms results in impaired BBB function, perturbed microvascular
architecture and diminished vasodilator responses to neuronal activity. Using novel imaging and analytic tools,
we will characterize NVU dysfunction in PVN-BDNF model mice by analyzing BBB integrity, microvascular
architecture, astrocytic and endothelial Ca2+ signaling events, and neuronal activity-dependent vasodilator
responses.
项目摘要
大脑的小血管疾病(SVD)以及阿尔茨海默氏病(AD)是主要原因
失智。广告和相关痴呆症的流行率在全球范围内增加,有效的发展
对潜在的病理生理机制的理解不足,阻碍了治疗。
心理/社会压力和相关的高血压是脑血管功能障碍的主要驱动因素,这是
导致血液灌注受损和特定大脑区域的血液脑屏障(BBB)的损害,
值得注意的是包括海马。但是,开发一种捕获病理生理学的动物模型
事实证明,人类持续不断的压力的各个方面很困难。在这里,我们建议
表征一个新型的实验模型 - PVN-BDNF模型,该模型解决了此问题并允许
在海马中研究与慢性应激相关的神经性血管功能障碍的研究,这是一种高度相关的
AD病理生理学中的大脑区域。该模型使用病毒向量来驱动大脑的长期过表达
在下丘脑(PVN)的室室核中衍生的神经营养因子(BDNF)。虽然bdnf
在海马中,传统上因其在学习和记忆中的作用而被认为是有益的
在PVN中,在刺激这两种主要压力途径中的中心但不值得赞赏的作用 - 同情
神经系统和下丘脑 - 垂体 - 肾上腺(HPA)轴 - 导致长期升高的血液
压力和血浆糖皮质激素水平。高血浆糖皮质激素水平反过来下调海马
BDNF水平;因此,PVN-BDNF模型重现下丘脑(增加)和海马的失衡
(减少)神经内分泌应激反应的BDNF表达特征。高血压和升高
糖皮质激素通过阻碍脑血管功能产生不利影响
神经血管单元(NVU)是一种功能和结构复杂的系统,其中神经胶质细胞(主要是星形胶质细胞)
神经元与周围脉管系统之间的中继信息支持神经元和突触功能。
根据以下内容,NVU机制的破坏会导致BBB功能受损,扰动微血管
结构和血管扩张对神经元活性的反应减少。使用新颖的成像和分析工具,
我们将通过分析的BBB完整性,微血管表征PVN-BDNF模型小鼠中NVU功能障碍
体系结构,星形细胞和内皮CA2+信号传导事件以及神经元活动依赖性血管扩张剂
回答。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benedek Erdos其他文献
Benedek Erdos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benedek Erdos', 18)}}的其他基金
Hypothalamic BDNF-mTOR signaling promotes hypertension by increasing cardiovascular sensitivity to stress
下丘脑 BDNF-mTOR 信号通过增加心血管对压力的敏感性促进高血压
- 批准号:
10736248 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别:
A novel experimental model of chronic stress and hypertension for studying dementia-related neurovascular dysfunction in the hippocampus
用于研究海马痴呆相关神经血管功能障碍的新型慢性应激和高血压实验模型
- 批准号:
10400211 - 财政年份:2021
- 资助金额:
$ 15.6万 - 项目类别:
Brain-derived neurotrophic factor: a novel regulator of cardiovascular function in the hypothalamus
脑源性神经营养因子:下丘脑心血管功能的新型调节剂
- 批准号:
9903424 - 财政年份:2017
- 资助金额:
$ 15.6万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:72202154
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:
10785755 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别: