Quantitative bioluminescence tomography for pre-clinical radiotherapy
用于临床前放射治疗的定量生物发光断层扫描
基本信息
- 批准号:10302251
- 负责人:
- 金额:$ 29.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAlgorithmsAnimalsBioluminescenceBiomedical EngineeringCalibrationDataDoseEnvironmentEvaluationFunctional ImagingFundingGlioblastomaHeterogeneityHumanImageKnowledgeLightLongitudinal StudiesMagnetic Resonance ImagingMeasuresMethodsModelingMonitorNormal tissue morphologyOpticsPET/CT scanPathologicPerformancePositioning AttributePropertyRadiationRadiation therapyRadiotherapy ResearchResearchResearch PersonnelShapesSignal TransductionStainsSurfaceSurvival RateSystemTestingTherapeutic StudiesTimeTissuesTreatment outcomeTumor VolumeUncertaintyUnited States National Institutes of HealthVariantanatomic imagingbasebioluminescence imagingcharge coupled device cameraclinical practicecone-beam computed tomographycontrast imagingdesigndesign and constructionimage guidedimaging capabilitiesimaging modalityimprovedin vivoin vivo imaginginnovationirradiationnovelpre-clinicalquantitative imagingreconstructionresponsesoft tissuespectrographsuccesstomographytreatment comparisontreatment planningtreatment responsetumortumor growth
项目摘要
PROJECT SUMMARY/ABSTRACT
Several groups, including ours, have initiated efforts to develop small-animal irradiators that mimic radiation
therapy (RT) for human treatment. The major image modality used to guide irradiation is cone-beam CT (CBCT),
and our CBCT-small animal radiation research platform (SARRP) was commercialized in 2010. Our system, and
others, were transformative for pre-clinical RT research, and 115 machines are now in use world-wide by some
600 investigators. While CBCT provides excellent guidance capability, it is less adept at localizing soft tissue
targets growing in a low image contrast environment. In contrast, bioluminescence imaging (BLI), provides strong
image contrast and thus is an attractive solution for soft tissue targeting. However, commonly used 2D BLI on
an animal surface is inadequate to guide irradiation, because optical transport from an internal bioluminescent
tumor is highly susceptible to the effects of irregular torso and tissue optical properties. Recognition of these
limitations led us to integrate 3D bioluminescence tomography (BLT) with SARRP. Our first BLT was designed
to localize the center of mass (CoM) of an optical target for irradiation. This advance was received with much
intrigue, however there was little practical adoption of the BLT system by SARRP users. It was clear that the
investigators required two key unmet needs to be addressed, to significantly enhance their conduct of research:
1) knowledge of target shape is a fundamental need for RT. Without such information to guide radiation, large
portions of normal tissue can be irradiated unnecessarily, leading to undesired experimental uncertainties. It is
imperative that we advance BLT guidance beyond CoM, to a new and precise level of 3D target shape
delineation; and 2) clinical practice recognizes the importance of complementary use of functional and
anatomical image for RT. BLI measures cellular viability, thus it is an ideal imaging modality for longitudinally
monitoring treatment outcome. However, the quantitative information that surface BLI provides for assessment
is currently limited or even inaccurate. With the novel reconstruction algorithm and calibration methods proposed
in this application, we will establish a new quantitative BLT (QBLT) to address this need. We hypothesize that
the QBLT/CBCT-guided small animal radiation system will provide investigators new capabilities to localize soft
tissue target, define its shape for conformal irradiation, and non-invasively quantify treatment outcome. Our aims
are: Aim 1: design and construct a standalone QBLT system readily adapted to commercial radiation platform;
Aim 2: optimize input data, and develop calibration method and reconstruction algorithm for target shape
delineation and quantitative imaging; Aim 3: validate the QBLT-guided RT in vivo and assess its suitability for
treatment assessment. The success of this proposal will significantly enhance small animal radiotherapy
research with the capabilities of functional targeting and assessment beyond anatomical imaging.
项目摘要/摘要
包括我们在内的几个小组已经开始努力开发模仿辐射的小动物辐射器
治疗治疗(RT)。用于指导照射的主要图像方式是锥形束CT(CBCT),
我们的CBCT-SMALL动物辐射研究平台(SARRP)在2010年进行了商业化。我们的系统和
其他的,对临床前RT研究进行了变革,现在有115台机器正在全球使用
600名调查员。虽然CBCT提供了出色的指导能力,但它在定位软组织方面不太熟练
在低图像对比度环境中生长的目标。相反,生物发光成像(BLI)可提供强大
图像对比是软组织靶向的有吸引力的解决方案。但是,通常使用的2d Bli
动物表面不足以指导辐射,因为来自内部生物发光的光学传输
肿瘤高度易受不规则躯干和组织光学特性的影响。认识这些
局限性导致我们将3D生物发光断层扫描(BLT)与SARRP整合在一起。我们的第一个BLT是设计的
定位光学目标的质量(COM)中心。这次进步得到了很多
然而,SARRP用户几乎没有实用的BLT系统采用。显然,
调查人员需要解决两个关键的未满足,以显着增强其研究的行为:
1)目标形状的知识是RT的基本需求。没有这样的信息来指导辐射,很大
正常组织的一部分可以不必要地辐射,导致不希望的实验不确定性。这是
必须将BLT指导超越COM,升至3D目标形状的新水平
描述; 2)临床实践认识到功能互补使用和
RT的解剖图像。 BLI测量细胞活力,因此它是纵向的理想成像方式
监测治疗结果。但是,表面BLI为评估提供的定量信息
目前有限甚至不准确。提出了新的重建算法和校准方法
在此应用程序中,我们将建立一个新的定量BLT(QBLT)来满足此需求。我们假设这一点
QBLT/CBCT指导的小动物辐射系统将为调查人员提供新的功能来定位软
组织靶标,定义其形状以用于保质照射,并非侵入性地量化治疗结果。我们的目标
为:目标1:设计和构建一个独立的QBLT系统,很容易适应商业辐射平台;
AIM 2:优化输入数据,并为目标形状开发校准方法和重建算法
描述和定量成像;目标3:在体内验证QBLT引导的RT,并评估其适用性
治疗评估。该提议的成功将显着增强小动物放射疗法
具有功能性靶向和评估能力以外的解剖成像的能力进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ken Kang-Hsin Wang其他文献
Ken Kang-Hsin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ken Kang-Hsin Wang', 18)}}的其他基金
X-ray/optical tomographic guidance and assessment for pre-clinical radiation Research
临床前辐射研究的 X 射线/光学断层扫描指导和评估
- 批准号:
10302256 - 财政年份:2021
- 资助金额:
$ 29.1万 - 项目类别:
X-ray/optical tomographic guidance and assessment for pre-clinical radiation Research
临床前辐射研究的 X 射线/光学断层扫描指导和评估
- 批准号:
10684628 - 财政年份:2021
- 资助金额:
$ 29.1万 - 项目类别:
Quantitative bioluminescence tomography for pre-clinical radiotherapy
用于临床前放射治疗的定量生物发光断层扫描
- 批准号:
10630901 - 财政年份:2019
- 资助金额:
$ 29.1万 - 项目类别:
A pre-clinical x-ray/optical tomography-guided radiation research platform for pancreatic cancer
临床前 X 射线/光学断层扫描引导的胰腺癌放射研究平台
- 批准号:
10302945 - 财政年份:2018
- 资助金额:
$ 29.1万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别: