Data-Driven Learning Framework for Fast Quantitative Knee Joint Mapping
用于快速定量膝关节绘图的数据驱动学习框架
基本信息
- 批准号:10296235
- 负责人:
- 金额:$ 53.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAffectAlgorithmsBiochemicalBiological ModelsCartilageChronicClinicalClinical ProtocolsCollagenCollagen FiberContrast MediaDataData SetDegenerative polyarthritisDetectionDiagnosticDiscriminationEarly DiagnosisElderlyEvaluationExtracellular MatrixExtracellular Matrix DegradationFutureGoalsHeterogeneityHumanHydration statusImageImaging TechniquesKneeKnee OsteoarthritisKnee jointLearningLifeMachine LearningMagnetic Resonance ImagingMapsMeniscus structure of jointMeta-AnalysisMethodsModelingModificationMorphologyMusculoskeletalPathologic ProcessesPatientsPatternPerformancePopulationProcessProteoglycanProtocols documentationRelaxationResearch PersonnelResolutionSamplingScanningScreening procedureSliceStructureT2 weighted imagingTechniquesTherapeutic AgentsThickThinnessTimeTissue EngineeringTissuesTranslatingValidationWaterarticular cartilagebasecartilage degradationcurative treatmentsdesigndisabilityearly screeningefficacy evaluationhealinghuman dataimprovedin vivolearning algorithmmacromoleculepreventreconstructionrepairedtoolwater environment
项目摘要
PROJECT SUMMARY
Osteoarthritis (OA), a leading cause of chronic disability in the elderly population, occurs with the degradation of
the extracellular matrix of articular cartilage, mainly composed of proteoglycan, collagen fibers, and water. Early
diagnosis of cartilage degeneration requires the detection of changes in proteoglycan concentration and collagen
integrity, preferably non-invasively and before any morphological changes occur. Spin-spin relaxation time (T2)
and spin-lattice relaxation time in the rotating frame (T1ρ) can provide quantitative information about the structure
and biochemical composition of the cartilage before morphological changes occur. Mono-exponential (ME)
models can characterize the T2 and T1ρ relaxation processes and map it for articular cartilage in the knee joint.
A recent meta-analysis showed that T1ρ provides more discrimination than T2 for OA. However, the ME model
alone cannot provide distinct information from different compartments of the cartilage. Recent studies have
shown that T1ρ relaxation might have bi-exponential (BE) components, following the hypothesis of the multi-
compartmental structure of the cartilage. BE T2 relaxation has shown better diagnostic performance than ME for
OA and can show the dispersion of the relaxation times, reflecting the heterogeneity in the macromolecular
environment of water in the cartilage. BE analysis of cartilage typically requires a larger number of acquisitions
with different spin-lock times (TSLs) or echo times (TEs), resulting in long scan time. High spatial resolution is
also needed to visualize the thin and curved cartilage and fine structures in the knee joint. As a result, in vivo
application of BE three-dimensional (3D) T1ρ and T2 mapping techniques is still very limited. Compressed sensing
(CS) combined with parallel imaging (PI) can accelerate acquisition and reduce the scan time required for ME
3D T1ρ and T2 mappings. T1ρ scans can be reduced from 30 min to ~3 min with an error smaller than 6.5%.
However, the error is two to three times larger for BE mapping. This problem can be potentially solved by
optimizing the sampling times (TSLs for T1ρ and TEs for T2) and the free parameters of the CS approach (k-
space sampling pattern, regularization function, regularization parameter, and minimization algorithm
parameters) using fully sampled 3D knee joint datasets, supported by machine learning tools. The overarching
goal of this proposal is to develop, optimize, and translate a high-spatial-resolution, rapid 3D magnetic resonance
imaging sequence using data-driven learning-based CS for assessment of the human knee joint and using ME
and BE 3D T1ρ (T2) mapping for improved biochemical characterization of cartilage and menisci on a standard
clinical 3T scanner.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravinder Regatte其他文献
Ravinder Regatte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravinder Regatte', 18)}}的其他基金
Multiparametric Mapping of Knee Joint with Magnetic Resonance Fingerprinting
膝关节磁共振指纹多参数绘图
- 批准号:
10541223 - 财政年份:2021
- 资助金额:
$ 53.18万 - 项目类别:
Multiparametric Mapping of Knee Joint with Magnetic Resonance Fingerprinting
膝关节磁共振指纹多参数绘图
- 批准号:
10115230 - 财政年份:2021
- 资助金额:
$ 53.18万 - 项目类别:
Data-Driven Learning Framework for Fast Quantitative Knee Joint Mapping
用于快速定量膝关节绘图的数据驱动学习框架
- 批准号:
10430275 - 财政年份:2021
- 资助金额:
$ 53.18万 - 项目类别:
Intervertebral Disc Mechanics with Functional GRASP-MRI
具有功能性 GRASP-MRI 的椎间盘力学
- 批准号:
10328260 - 财政年份:2021
- 资助金额:
$ 53.18万 - 项目类别:
Rapid Quantitative Assessment of Knee Joint with Compressed Sensing
利用压缩感知对膝关节进行快速定量评估
- 批准号:
10455507 - 财政年份:2020
- 资助金额:
$ 53.18万 - 项目类别:
Rapid Quantitative Assessment of Knee Joint with Compressed Sensing
利用压缩感知对膝关节进行快速定量评估
- 批准号:
10686034 - 财政年份:2020
- 资助金额:
$ 53.18万 - 项目类别:
Rapid Quantitative Assessment of Knee Joint with Compressed Sensing
利用压缩感知对膝关节进行快速定量评估
- 批准号:
10227958 - 财政年份:2020
- 资助金额:
$ 53.18万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 53.18万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 53.18万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 53.18万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 53.18万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 53.18万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 53.18万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 53.18万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 53.18万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 53.18万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 53.18万 - 项目类别:
Standard Grant














{{item.name}}会员




