Immunoevasive Engineered Living Blood Vessels
免疫逃避工程活血管
基本信息
- 批准号:10420546
- 负责人:
- 金额:$ 61.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AllogenicAneurysmArteriesBiochemicalBiologicalBiomechanicsBlood VesselsCD47 geneCell WallCellsChemicalsCollagenCollagen FiberCollagen FibrilElastinElementsEndothelial CellsEngineeringExtracellular MatrixFailureHLA G antigenHLA-A geneHomingHumanImmune systemImmunoassayImmunologicsImplantIn VitroInfiltrationMechanicsMicrofabricationMorphologyMusNatural Killer CellsOperative Surgical ProceduresPatientsPhasePhenotypePhysiologicalProcessProductionPropertyProteinsProtocols documentationRattusReportingResearch PersonnelRiskSmooth Muscle MyocytesSourceStenosisStructureT-LymphocyteTechniquesThickTissue EngineeringVascular Smooth Musclebiodegradable polymerdesigndifferentiation protocolgenome editinghuman pluripotent stem cellhydrodynamic flowimmunogenicityimmunoregulationimplantationin vivoinnovationlarge scale productionmacrophagematerials scienceprogrammed cell death ligand 1protein expressionreconstitutionresponsescaffoldstem cell biologystem cellstoolvascular tissue engineering
项目摘要
Project Summary
Recent innovations by project investigators have established an important new framework for the rapid
and scalable production of engineered living blood vessels. Notably, we have designed new protocols for
multiplex genome editing to generate human pluripotent stem cells (hPSCs) in which HLA-A, -B, and -C were
selectively ablated, HLA class II molecules eliminated, and multiple tolerogenic factors, including HLA-G, PD-L1,
and CD47 expressed. Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) derived from these
PSCs, using our previously reported chemically defined differentiation protocols, were protected from
alloimmune rejection in vitro and in vivo. Further, we have developed new engineering approaches for the
fabrication of mechanically robust, free-standing, ultrathin collagen sheets and related manufacturing tools for
the scalable production of engineered living blood vessels. In this proposal, we postulate that immunoevasive
blood vessels can be efficiently and rapidly manufactured using ‘hypoimmunogenic’ cells and planar extracellular
matrix (ECM) scaffolds of defined composition, content, and microarchitecture. In the process, the efficacy of a
variety of tolerogenic strategies will be evaluated. In this proposal we intend to:
(1) Define the morphological and structural remodeling responses of an engineered living blood vessel
substitute designed to mimic the microstructure of the native vessel wall. Engineered vessels will be
fabricated by seeding primary human vascular wall cells on ultrathin ECM sheets consisting of collagen fibers or
a collagen-elastin multilamellar composite. Biomechanical properties will be tuned in response to microstructure,
and both biochemical and functional responses defined under simulated physiological conditions. Vessels will be
implanted into immunodeficient SRG rats and both phenotypic stability and remodeling responses defined.
(2) Generate ‘hypoimmunogenic’ vascular smooth muscle cells and endothelial cells that evade
immunological rejection. ECs and SMCs will be derived from hypoimmunogenic hPSCs generated by
multiplex genome editing and biological properties determined, including differentiation efficiency, functionality,
absence of HLA proteins, and expression of tolerogenic factors. Angiogenic potential and vessel network
formation will be assessed in vitro and in vivo. Alloreactivity will be evaluated using an in vitro panel of T cell, NK
cell, and macrophage immunoassays, as well as in mice containing human immune system components.
(3) Characterize the phenotypic stability, immunogenicity, and remodeling responses of immunoevasive
engineered living blood vessels. Engineered vessels comprised of hypoimmunogenic cells will be produced
and related biomechanical and biochemical properties characterized. We will determine the capacity of these
vessels to maintain phenotypic stability after in vivo implantation in immunodeficient SRG rats. In the final phase
of these studies, we will determine the ability of vessels engineered from hypoimmunogenic SMCs and ECs to
evade immunological rejection in SRG rats reconstituted with elements of a human immune system.
项目摘要
项目调查人员的最新创新已经为快速建立了一个重要的新框架
以及可扩展的工程活血管的产生。值得注意的是,我们为
多重基因组编辑以生成人类多能干细胞(HPSC),其中HLA -A,-b和-c为
有选择地消除的HLA II类分子消除了,以及包括HLA-G,PD-L1,包括多种耐受因素
和CD47表示。源自这些的血管平滑肌细胞(SMC)和内皮细胞(EC)
PSC使用我们先前报道的明确定义的分化方案,受到保护,免受
体外和体内的同种异体免疫排斥。此外,我们开发了新的工程方法
制造机械强大的,独立的,超薄的胶原蛋白板和相关的制造工具
工程活血管的可扩展产生。在此提案中,我们假设免疫撤离
血管可以使用“低免疫原性”细胞和平面细胞外有效,快速生产
矩阵(ECM)定义成分,内容和微体系结构的支架。在此过程中,
将评估各种耐受性策略。在此提案中,我们打算:
(1)定义工程活血管的形态和结构重塑反应
替代旨在模仿天然容器壁的微观结构。工程船将是
通过在超薄的ECM片上播种原代人血管壁细胞,由胶原蛋白纤维或
胶原蛋白多层复合材料。生物力学特性将根据微观结构进行调整,
以及在模拟生理条件下定义的生化和功能反应。船将是
植入免疫缺陷的SRG大鼠以及定义的表型稳定性和重塑反应。
(2)产生逃避的“低免疫原性”血管平滑肌细胞和内皮细胞
免疫拒绝。 ECS和SMC将源自由低肿瘤的HPSC。
多重基因组编辑和生物学特性,包括分化效率,功能,
HLA蛋白的缺乏和耐受因子的表达。血管生成潜力和血管网络
形成将在体外和体内评估。同种异体反应性将使用体外面板NK评估
细胞和巨噬细胞免疫测定以及含有人类免疫系统成分的小鼠中。
(3)表征表型稳定性,免疫原性和免疫厌氧反应的重塑反应
工程活血管。将产生由低免疫原性细胞组成的工程血管
以及相关的生物力学和生化特性。我们将确定这些能力
免疫缺陷型SRG大鼠体内植入后保持表型稳定性的血管。在最后阶段
在这些研究中,我们将确定从低免疫原性SMC和ECS设计到的血管的能力
SRG大鼠的免疫排斥与人类免疫系统的元素重组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elliot Chaikof其他文献
Elliot Chaikof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elliot Chaikof', 18)}}的其他基金
Structure-Guided Design of Intestine-Selective AHR Agonists for Restoration of Gut Barrier Integrity in IBD
用于恢复 IBD 肠道屏障完整性的肠道选择性 AHR 激动剂的结构引导设计
- 批准号:
10627922 - 财政年份:2022
- 资助金额:
$ 61.18万 - 项目类别:
Structure-Guided Design of Intestine-Selective AHR Agonists for Restoration of Gut Barrier Integrity in IBD
用于恢复 IBD 肠道屏障完整性的肠道选择性 AHR 激动剂的结构引导设计
- 批准号:
10420534 - 财政年份:2022
- 资助金额:
$ 61.18万 - 项目类别:
Sulfated Poly-Amido-Saccharide (sulPAS) Biomaterials as Anticoagulants
作为抗凝剂的硫酸化聚酰胺糖 (sulPAS) 生物材料
- 批准号:
10649522 - 财政年份:2022
- 资助金额:
$ 61.18万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
10474980 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
9795082 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
9805901 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
10229398 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
10664097 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
10222522 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
相似国自然基金
基于CTA血流动力学组学智能评估颅内小动脉瘤稳定性的研究
- 批准号:82302300
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于几何形态与生物力学分析预测腹主动脉瘤腔内治疗术后锚定区相关不良事件
- 批准号:82300542
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
谷氨酰胺介导的血管内皮铁死亡在颅内动脉瘤形成中的机制研究
- 批准号:82301491
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经嵴起源的平滑肌细胞在动脉瘤中的命运及功能研究
- 批准号:82300552
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Nrf2调控脂质氧化诱导的血管平滑肌细胞表型转换在颅内动脉瘤破裂出血中的作用机制研究
- 批准号:82301489
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目