Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
基本信息
- 批准号:10431850
- 负责人:
- 金额:$ 58.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffectAlgorithmsAreaArtificial IntelligenceBioinformaticsBiomedical ResearchBlindnessBlood VesselsCaringChildhoodClinicalClinical InformaticsClinical MedicineClinical ResearchCohort StudiesComputational BiologyDataDetectionDevelopmentDiagnosisDiseaseDisease ManagementEnvironmentEvaluationExpert SystemsFeedbackFundingGene ExpressionGenesGeneticGenetic MarkersGenetic RiskGenomicsGenotypeGoalsGrantHealthImageImage AnalysisInfantInformaticsInformation ManagementInternationalKnowledgeLongitudinal StudiesMachine LearningMacular degenerationMeasurementMedical GeneticsMendelian randomizationMethodsModelingMolecular GeneticsNetwork-basedOphthalmic examination and evaluationOphthalmologyOther GeneticsPaperPathogenesisPeer ReviewPerceptionPerformancePhenotypePredispositionPremature BirthPremature InfantPublishingReference StandardsResearchResearch PersonnelRetinaRetinopathy of PrematurityRiskRisk FactorsSeveritiesSystemTechnologyTestingUnited StatesValidationWorkanalytical toolbasebiomedical informaticscare deliveryclinical diagnosisclinical examinationclinical phenotypeclinical riskclinically significantcomputer sciencedata accessdata integrationdeep learningdetection platformdiagnosis standarddisorder riskfeature extractiongenetic analysisgenetic varianthigh riskimaging geneticsimprovedinsightmachine learning predictionmultidisciplinarymultiple data typesneovascularneural networknovelphenotypic dataprospectiveprototypereal world applicationrecruitretinal imagingrisk prediction modelscreeningserial imagingsupplemental oxygen
项目摘要
Project Summary
The long-term goal of this project is to establish a quantitative framework for retinopathy of prematurity (ROP)
care based on clinical, imaging, genetic, and informatics principles. In the previous grant period, we have
developed artificial intelligence methods for ROP diagnosis, but real-world adoption has been limited by lack of
prospective validation and by perception of these systems as “black boxes” that do not explain their rationale
for diagnosis. Furthermore, although biomedical research data are being generated at an enormous pace,
much less work has been done to integrate disparate scientific findings across the spectrum from genomics to
imaging to clinical medicine. This renewal will address current gaps in knowledge in these areas. Our overall
hypotheses are that developing a quantitative framework for ROP care using artificial intelligence and analytics
will improve clinical disease management, that building “explainable” artificial intelligence systems will enhance
clinical acceptance and educational opportunities, and that analysis of relationships among clinical, imaging,
environmental, and genetic findings, in ROP will improve understanding of disease pathogenesis and risk.
These hypotheses will be tested using three Specific Aims: (1) Evaluation performance of an artificial
intelligence system for ROP diagnosis and screening prospectively. This will include: (a) recruit a target of over
2000 eye exams including wide-angle retinal images from 375 subjects at 5 centers, (b) optimize an image
quality detection algorithm we have recently developed, and (c) analyze system accuracy for ROP diagnosis
and screening (using a novel quantitative vascular severity scale). (2) Improve the interpretability of our
existing artificial intelligence methods for ROP diagnosis. This will include: (a) increase “explainability” of
systems by combining deep learning with traditional feature extraction methods, (b) develop neural networks to
identify changes between serial images, and (c) evaluate these methods through systematic feedback by
experts. (3) Develop integrated models for ROP pathogenesis and risk. This will include: (a) build and improve
ROP risk prediction models based on clinical, image, and demographic features, and (b) integrate genetic,
imaging, clinical, and environmental variables through genetic risk prediction by machine learning, by
investigating casual relationships with genetic variants and genetic risk scores, and by incorporating SNP
associations with gene expression measurements to identify functional genes of ROP. Ultimately, these
studies will significantly reduce barriers to adoption of technologies such as artificial intelligence for clinicians,
and will demonstrate a prototype for health information management which combines genotypic and
phenotypic data. This project will be performed by a multi-disciplinary team of investigators who have worked
successfully together for nearly 10 years, and who have expertise in ophthalmology, biomedical informatics,
computer science, computational biology, ophthalmic genetics, genetic analysis, and statistical genetics.
项目摘要
该项目的长期目标是建立一个定量框架,以实现早产性视网膜病变(ROP)
基于临床,成像,遗传和信息原则的护理。在上一个赠款期,我们有
开发的人工智能方法用于ROP诊断,但实际采用的限制是由于缺乏
前瞻性验证并通过将这些系统视为“黑匣子”,这些系统无法解释其理由
用于诊断。此外,尽管在巨大空间中生成了生物医学研究数据,但
从基因组学到整个频谱之间的不同科学发现进行了少得多的工作
成像临床医学。这种续约将解决这些领域知识的当前差距。我们的整体
假设是使用人工智能和分析来开发一个定量框架以进行ROP护理
将改善临床疾病管理,建立“可解释的”人工智能系统将增强
临床接受和教育机会,以及对临床,成像之间关系的分析
ROP中的环境和遗传发现将改善对疾病发病机理和风险的理解。
这些假设将使用三个特定目的进行测试:(1)人造的评估性能
ROP诊断和前瞻性筛查的情报系统。这将包括:(a)招募一个目标
2000眼检查,包括来自5个中心的375名受试者的广角残差图像,(b)优化图像
我们最近开发的质量检测算法,以及(c)ROP诊断的分析系统精度
和筛查(使用新型的定量血管严重程度量表)。 (2)提高我们的解释性
现有的人工智能方法用于ROP诊断。这将包括:(a)增加的“解释性”
通过将深度学习与传统特征提取方法相结合,(b)开发神经网络
确定串行图像之间的变化,(c)通过系统反馈评估这些方法
专家。 (3)开发用于ROP发病机理和风险的综合模型。这将包括:(a)建立和改进
ROP风险预测模型基于临床,图像和人口特征,以及(b)综合遗传,
通过机器学习,通过遗传风险预测,通过机器学习的成像,临床和环境变量
研究与遗传变异和遗传风险评分的随意关系,并通过编码SNP
与基因表达测量值的关联,以鉴定ROP的功能基因。最终,这些
研究将大大减少采用诸如临床医生人工智能等技术的障碍,
并将展示一个结合基因型和的健康信息管理原型
表型数据。该项目将由工作人员的多学科团队进行
成功在一起近10年,并且在眼科,生物医学信息中拥有专业知识,
计算机科学,计算生物学,眼科遗传学,遗传分析和统计遗传学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Peter Campbell其他文献
Influence of serial retinal images on the diagnosis and management of retinopathy of prematurity (ROP)
- DOI:
10.1016/j.jaapos.2018.07.216 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Shin Hae Park;Kai Kang;Sang Jin Kim;Karyn Jonas;Susan Ostmo;John Peter Campbell;Michael F. Chiang;R.V. Paul Chan - 通讯作者:
R.V. Paul Chan
John Peter Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Peter Campbell', 18)}}的其他基金
Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
- 批准号:
10760401 - 财政年份:2023
- 资助金额:
$ 58.28万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10612906 - 财政年份:2020
- 资助金额:
$ 58.28万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10404639 - 财政年份:2020
- 资助金额:
$ 58.28万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10198930 - 财政年份:2020
- 资助金额:
$ 58.28万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10620354 - 财政年份:2010
- 资助金额:
$ 58.28万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10206145 - 财政年份:2010
- 资助金额:
$ 58.28万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
9974137 - 财政年份:2010
- 资助金额:
$ 58.28万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Impact of Medicaid Prescription Cap Policies on Treatment Outcomes for Opioid Use Disorder: A National Mixed Methods Study
医疗补助处方上限政策对阿片类药物使用障碍治疗结果的影响:一项国家混合方法研究
- 批准号:
10637024 - 财政年份:2023
- 资助金额:
$ 58.28万 - 项目类别:
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 58.28万 - 项目类别: