Clinical and genetic analysis of retinopathy of prematurity

早产儿视网膜病变的临床及遗传学分析

基本信息

  • 批准号:
    10431850
  • 负责人:
  • 金额:
    $ 58.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-30 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary The long-term goal of this project is to establish a quantitative framework for retinopathy of prematurity (ROP) care based on clinical, imaging, genetic, and informatics principles. In the previous grant period, we have developed artificial intelligence methods for ROP diagnosis, but real-world adoption has been limited by lack of prospective validation and by perception of these systems as “black boxes” that do not explain their rationale for diagnosis. Furthermore, although biomedical research data are being generated at an enormous pace, much less work has been done to integrate disparate scientific findings across the spectrum from genomics to imaging to clinical medicine. This renewal will address current gaps in knowledge in these areas. Our overall hypotheses are that developing a quantitative framework for ROP care using artificial intelligence and analytics will improve clinical disease management, that building “explainable” artificial intelligence systems will enhance clinical acceptance and educational opportunities, and that analysis of relationships among clinical, imaging, environmental, and genetic findings, in ROP will improve understanding of disease pathogenesis and risk. These hypotheses will be tested using three Specific Aims: (1) Evaluation performance of an artificial intelligence system for ROP diagnosis and screening prospectively. This will include: (a) recruit a target of over 2000 eye exams including wide-angle retinal images from 375 subjects at 5 centers, (b) optimize an image quality detection algorithm we have recently developed, and (c) analyze system accuracy for ROP diagnosis and screening (using a novel quantitative vascular severity scale). (2) Improve the interpretability of our existing artificial intelligence methods for ROP diagnosis. This will include: (a) increase “explainability” of systems by combining deep learning with traditional feature extraction methods, (b) develop neural networks to identify changes between serial images, and (c) evaluate these methods through systematic feedback by experts. (3) Develop integrated models for ROP pathogenesis and risk. This will include: (a) build and improve ROP risk prediction models based on clinical, image, and demographic features, and (b) integrate genetic, imaging, clinical, and environmental variables through genetic risk prediction by machine learning, by investigating casual relationships with genetic variants and genetic risk scores, and by incorporating SNP associations with gene expression measurements to identify functional genes of ROP. Ultimately, these studies will significantly reduce barriers to adoption of technologies such as artificial intelligence for clinicians, and will demonstrate a prototype for health information management which combines genotypic and phenotypic data. This project will be performed by a multi-disciplinary team of investigators who have worked successfully together for nearly 10 years, and who have expertise in ophthalmology, biomedical informatics, computer science, computational biology, ophthalmic genetics, genetic analysis, and statistical genetics.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Peter Campbell其他文献

Influence of serial retinal images on the diagnosis and management of retinopathy of prematurity (ROP)
  • DOI:
    10.1016/j.jaapos.2018.07.216
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shin Hae Park;Kai Kang;Sang Jin Kim;Karyn Jonas;Susan Ostmo;John Peter Campbell;Michael F. Chiang;R.V. Paul Chan
  • 通讯作者:
    R.V. Paul Chan

John Peter Campbell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Peter Campbell', 18)}}的其他基金

Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
  • 批准号:
    10760401
  • 财政年份:
    2023
  • 资助金额:
    $ 58.28万
  • 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
  • 批准号:
    10612906
  • 财政年份:
    2020
  • 资助金额:
    $ 58.28万
  • 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
  • 批准号:
    10404639
  • 财政年份:
    2020
  • 资助金额:
    $ 58.28万
  • 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
  • 批准号:
    10198930
  • 财政年份:
    2020
  • 资助金额:
    $ 58.28万
  • 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
  • 批准号:
    10620354
  • 财政年份:
    2010
  • 资助金额:
    $ 58.28万
  • 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
  • 批准号:
    10206145
  • 财政年份:
    2010
  • 资助金额:
    $ 58.28万
  • 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
  • 批准号:
    9974137
  • 财政年份:
    2010
  • 资助金额:
    $ 58.28万
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 58.28万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了