Defining the functional organization of cerebellar output circuits that control feeding behavior
定义控制进食行为的小脑输出电路的功能组织
基本信息
- 批准号:10557199
- 负责人:
- 金额:$ 56.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAppetite StimulantsAssociation LearningBehaviorBehavior TherapyBehavioralBiological AssayBody WeightBrainBrain imagingBrain regionCerebellar NucleiCerebellumCerebral cortexCognitiveComplexConsumptionDataDedicationsDevelopmentDissociationEatingEating DisordersFeeding behaviorsFoodFunctional Magnetic Resonance ImagingFunctional disorderGastrointestinal tract structureGeneticGoalsHungerHypothalamic structureImageInfusion proceduresLateralLinkLogicMapsMeasuresMediatingMetabolicMetabolismMethodsMolecularMolecular GeneticsMotivationMotorMotor PathwaysMusNervous System TraumaNeuronsNutrientObesityOutputPathway interactionsPatternPhysiologicalPopulationPrevalenceProcessPropertyPublic HealthPublishingRabiesRabies virusRewardsRodentRoleSatiationSignal TransductionStomachStructureStructure of nucleus infundibularis hypothalamiSynapsesTestingThalamic structureTherapeuticViralWeight maintenance regimencalcium indicatorcerebellar lesiondrug efficacydrug modificationexperimental studyfeedingfood consumptiongenetic approachinsightlimb movementmotivational processesmotor controlnervous system disorderneuralnovelobese patientsoptogeneticsparaventricular nucleusreduced food intakereward processingsatiety centerskillstherapeutically effectivetooltreatment strategyzona incerta
项目摘要
Project Summary
In addition to motor and classical conditioning functions, the cerebellum contributes to motivation and reward
processes that underlie complex behaviors. To influence non-motor processes, such as feeding and food-
seeking behaviors, it is thought that the cerebellum modulates cortical and subcortical feeding centers. The only
path through which the cerebellum can influence feeding control is through cerebellar output circuits in the deep
cerebellar nuclei (DCN). Yet little is known about how DCN circuits are organized and whether distinct pathways
are dedicated to feeding and food-seeking behaviors. The recent identification of discrete subsets of DCN
neurons that project to thalamic, subthalamic and hypothalamic brain regions indicates the existence of neural
subtype organization to cerebellar output. Based on published and preliminary data, the primary hypotheses of
this proposal are that: 1) distinct DCN-mediated pathways project to known feeding centers to influence food
intake; and 2) these features identify distinct DCN circuits essential for feeding and/or metabolism; and finally,
3) dedicated DCN-mediated pathways are engaged during feeding, and influence the neural activity of specific
neuronal subtypes in key feeding centers. This proposal will test these hypotheses through three aims. Aim 1
delineates distinctions in target selectivity of specific DCN circuits. We will employ conditional viral tracing, and
genetic fate-mapping methods to define the output connectivity of DCN subpopulations to feeding centers
(paraventricular nucleus, lateral hypothalamus, arcuate nucleus and zona incerta), which we hypothesize
influence feeding behavior. Additionally, we will determine if major subclasses of arcuate neurons (e.g. POMC
or AgRP) are linked to the DCN with specific Cre-lines and trans-synaptic rabies virus. In Aim 2, we will define
the role of DCN circuits in feeding control through optogenetic activation and silencing of discrete neuronal
subpopulations in the DCN. Specifically, we will examine how selective neural manipulation of anatomically-
defined DCN pathways influences food intake and metabolism, and dissociate output pathways for motor control.
Finally, the experiments in Aim 3 will determine the activity profile of discrete DCN neuronal subpopulations, and
how activity in these subpopulations changes neural activity of known feeding circuits in freely moving mice
during food intake using deep-brain imaging. By defining the anatomical and functional organization of cerebellar
output pathways, and their activity dynamics involved in feeding behavior, these aims provide insight into more
general mechanisms of how cerebellum controls motivation and reward circuits, and establish a framework for
exploring the more enigmatic cognitive roles of the cerebellum. A more comprehensive understanding of
cerebellar function will provide greater insight into how neurological disorders and injuries disrupt food intake,
and lay the groundwork for development of novel treatment strategies for obesity and eating disorders.
项目摘要
除了运动和经典条件功能外,小脑还有助于动力和奖励
构成复杂行为的过程。影响非运动过程,例如喂养和食物 -
寻求行为,人们认为小脑会调节皮质和皮质下喂养中心。唯一的
小脑可以影响进食控制的路径是深处的小脑输出电路
小脑核(DCN)。然而,关于DCN电路的组织方式以及是否不同的途径知之甚少
致力于喂养和寻求食物的行为。 DCN的离散子集的最新鉴定
向丘脑,丘脑和下丘脑脑区域投射的神经元表明存在神经
小脑输出的亚型组织。根据已发布和初步数据,主要假设
该建议是:1)DCN介导的途径不同
进气2)这些特征确定了对喂养和/或代谢必不可少的DCN电路;最后,
3)专用DCN介导的途径在进食过程中参与并影响特定的神经活动
关键喂养中心中的神经元亚型。该建议将通过三个目标检验这些假设。目标1
描述特定DCN电路的目标选择性的区分。我们将采用有条件的病毒追踪,并
遗传命运映射方法来定义DCN亚群到喂养中心的输出连接
(室室核,下丘脑侧,弧形核和Zona incerta),我们假设
影响喂养行为。此外,我们将确定是否主要的神经元的主要亚类(例如POMC
或Agrp)与特定的Cre-line和反式突触狂犬病病毒相关。在AIM 2中,我们将定义
DCN电路通过光学激活和离散神经元的沉默在进食控制中的作用
DCN中的亚群。具体而言,我们将研究解剖学的选择性神经操纵如何
定义的DCN途径会影响食物摄入量和代谢,并解离运动控制的输出途径。
最后,AIM 3中的实验将确定离散DCN神经元亚群的活性特征,并确定
这些亚群中的活性如何改变自由移动小鼠中已知喂养电路的神经活动
在食物摄入期间,使用深脑成像。通过定义小脑的解剖学和功能组织
输出途径及其在喂养行为中涉及的活动动态,这些目的提供了更多信息
小脑如何控制动机和奖励电路的一般机制,并建立一个框架
探索小脑更神秘的认知作用。对
小脑功能将为神经系统疾病和伤害如何破坏食物的摄入量提供更多的了解,
并为制定肥胖症和饮食失调的新型治疗策略的基础奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Nicholas Betley其他文献
John Nicholas Betley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Nicholas Betley', 18)}}的其他基金
Using in-vivo Real-time Biosensor to Evaluate Prodrugs Designed to Prolong Therapeutic Effects for Smoking Cessation.
使用体内实时生物传感器评估旨在延长戒烟治疗效果的前药。
- 批准号:
10546293 - 财政年份:2023
- 资助金额:
$ 56.87万 - 项目类别:
Regulation of satiation centers in health and obesity
健康和肥胖中饱食中心的监管
- 批准号:
10501802 - 财政年份:2022
- 资助金额:
$ 56.87万 - 项目类别:
Regulation of satiation centers in health and obesity
健康和肥胖中饱食中心的监管
- 批准号:
10678993 - 财政年份:2022
- 资助金额:
$ 56.87万 - 项目类别:
Defining the functional organization of cerebellar output circuits that control feeding behavior
定义控制进食行为的小脑输出电路的功能组织
- 批准号:
10352402 - 财政年份:2021
- 资助金额:
$ 56.87万 - 项目类别:
Deconstructing the Neural Control of Food Seeking
解构寻找食物的神经控制
- 批准号:
10152585 - 财政年份:2017
- 资助金额:
$ 56.87万 - 项目类别:
Deconstructing the Neural Control of Food Seeking
解构寻找食物的神经控制
- 批准号:
9363470 - 财政年份:2017
- 资助金额:
$ 56.87万 - 项目类别:
Deconstructing the Neural Control of Food Seeking
解构寻找食物的神经控制
- 批准号:
9923452 - 财政年份:2017
- 资助金额:
$ 56.87万 - 项目类别:
相似海外基金
Non-coding RNA regulation of neuronal protein translation and appetite control
非编码RNA调节神经元蛋白质翻译和食欲控制
- 批准号:
10751087 - 财政年份:2023
- 资助金额:
$ 56.87万 - 项目类别:
Central Mediation of Growth Hormone Effects in Humans
人类生长激素效应的中枢调节
- 批准号:
10659801 - 财政年份:2023
- 资助金额:
$ 56.87万 - 项目类别:
Ghrelin Modulation of CaV 2.2 Channels After Spinal Cord Injury
脊髓损伤后 Ghrelin 对 CaV 2.2 通道的调节
- 批准号:
10750130 - 财政年份:2023
- 资助金额:
$ 56.87万 - 项目类别:
Hypothalamic lipid signaling in metabolism regulation
代谢调节中的下丘脑脂质信号传导
- 批准号:
10745160 - 财政年份:2023
- 资助金额:
$ 56.87万 - 项目类别: