Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
基本信息
- 批准号:MR/X03657X/1
- 负责人:
- 金额:$ 146.75万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this research project is to provide a step change in the measurement and understanding of ionisation biases in mass spectrometry imaging (MSI). MSI is an important emerging technology which enables the mapping of thousands of molecules, including metabolites and drugs, detected as ions in the mass spectrometry instrument. MSI, as a suite of modalities, can be employed to analyse almost any molecule in almost any sample type and so has the potential to revolutionise how we evaluate living systems. Diseases such as cancer involve the disruption of the bodies' natural processes including cellular metabolism. MSI, in mapping thousands of metabolites in every image pixel, can therefore provide powerful insights into how different cancers grow and evolve, helping identify new targets for treatment. Despite this promise, MSI suffers from unknown biases in detected ion signal. These can lead to misleading observations with potentially costly implications. Ionisation biases, or matrix effects, encompass a range of phenomena which can lead to unknown relationships between the number of detected ions and the original number of associated molecules in the sample. These biases may also be non-linear across concentration ranges present within biological samples. Therefore, if the MSI practitioner cannot be certain that, for example, a 5 fold increase in detected ion intensity reflects a 5 fold increase in the original sample metabolite concentration, it is clear that a significant hurdle is present. Furthermore, this phenomenon will be present to varying unknow extents for every ion in every pixel of a dataset. This corresponds to significantly upwards of 1,000,000 ion measurements per image, each with different (unknown) ionisation bias. Therefore, drastically limiting opportunities for quantitation and providing erroneous impression of endogenous metabolite concentrations. Typical approaches for characterising ionisation biases or quantifying endogenous metabolite concentration in MSI will only study a few molecules at most. Currently there are no existing methods allowing generalized study and correction of ionisation biases in MSI. Additionally, no standard samples have been developed to allow assessment of these phenomena and so there is a lack of understanding of these biases across between MSI modalities. This project aims to produce a robust foundation for the study and correction of ionisation biases in MSI. A rigorous empirical approach will be pursued through the development of standard samples suitable for studying ionisation bias behaviours. A suite of molecules will be selected for: their relevance to critical pathologies e.g. cancer metabolism; physico-chemical properties; relevance to the mass spectrometry imaging field. These samples will used to characterize the biases in detection across multiple mass spectrometry imaging modalities including MALDI and DESI MSI. Models describing these ionisation behaviours will be produced and computational approaches for evaluation and transformation of these models will be developed. Multivariate and machine learning approaches will be employed to evaluate the contribution and association of mass spectral and physico-chemical properties of the systems in question.
该研究项目的目的是在质谱成像(MSI)中对电离偏差的测量和理解进行逐步改变。 MSI是一项重要的新兴技术,可实现数千个分子(包括代谢物和药物)的映射,这些分子在质谱仪器中被检测为离子。 MSI作为一套模式,可用于分析几乎任何样本类型中的几乎所有分子,因此有可能彻底改变我们评估生活系统的方式。诸如癌症之类的疾病涉及人体自然过程(包括细胞代谢)的破坏。因此,在绘制每个图像像素中数千种代谢产物的绘制时,可以为不同的癌症生长和发展如何发展,有助于识别新的治疗靶标。尽管有这样的承诺,MSI仍有检测到的离子信号中未知的偏见。这些可能会导致具有误导性的误导性观察,并具有昂贵的含义。电离偏差或基质效应包括一系列现象,这些现象可能导致检测到的离子数量与样品中相关分子的原始数量之间的关系未知。这些偏见在生物样品中存在的浓度范围内也可能是非线性的。因此,如果MSI从业者无法确定,例如,检测到的离子强度增加5倍,反映了原始样品代谢物浓度的5倍增加,则显然存在一个明显的障碍。此外,这种现象将存在于数据集的每个像素中的每个离子的不知道的范围。这对应于每个图像的1000,000个离子测量值的显着对应,每个测量值不同(未知)电离偏差。因此,极大地限制了定量的机会,并提供了内源代谢物浓度的错误印象。表征电离偏差或量化内源代谢物浓度的典型方法最多只能研究一些分子。目前尚无现有方法允许广义研究和校正MSI中的电离偏差。此外,还没有开发出标准样本来评估这些现象,因此在MSI模式之间缺乏对这些偏见的了解。该项目旨在为MSI中的电离偏见奠定坚固的基础。通过开发适合研究电离偏置行为的标准样本,将采用严格的经验方法。将选择一组分子以:它们与关键病理相关,例如癌症代谢;物理化学特性;与质谱成像场有关。这些样品将用于表征跨多个质谱成像模态检测的偏差,包括MALDI和DESI MSI。将产生描述这些电离行为的模型,并将开发评估和转换这些模型的计算方法。将采用多元和机器学习方法来评估所讨论系统的质谱和物理化学特性的贡献和关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rory Steven其他文献
Rory Steven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel, Targeted Method for Bacteriophage Purification
噬菌体纯化的新型靶向方法
- 批准号:
10698983 - 财政年份:2023
- 资助金额:
$ 146.75万 - 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:
10785755 - 财政年份:2023
- 资助金额:
$ 146.75万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 146.75万 - 项目类别:
Combining immunotherapy with molecularly targeted radiation therapy
免疫治疗与分子靶向放射治疗相结合
- 批准号:
10736873 - 财政年份:2023
- 资助金额:
$ 146.75万 - 项目类别:
Neuromodulation and Robustness of Neurons and Networks
神经元和网络的神经调节和鲁棒性
- 批准号:
10892552 - 财政年份:2023
- 资助金额:
$ 146.75万 - 项目类别: