Investigating the molecular and mechanical regulation of pulsed actomyosin contra

研究脉冲肌动球蛋白拮抗剂的分子和机械调节

基本信息

  • 批准号:
    7770569
  • 负责人:
  • 金额:
    $ 8.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-01-15 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Morphogenesis is the process whereby simple tissues, such as epithelial sheets, are sculpted into complex organs. Morphogenesis is driven by forces generated by individual cells, which result in changes in cell shape and tissue mechanics. During development, these changes are tightly regulated in space and time by both genetic and mechanical signals. During cancer, these signals are often improperly activated, resulting in abnormal cell behavior that leads to tumor cell growth and metastasis. Therefore, understanding how cells and tissues generate forces is essential to understand development and cancer. Because morphogenesis depends on the complex interplay of molecular and mechanical signals, identifying the mechanisms that drive morphogenesis requires a multidisciplinary approach that includes biochemistry, genetics, cell and developmental biology, physics, and mathematical modeling. As a graduate student in David Drubin's lab at UC Berkeley, I was trained in cell biology, biochemistry, and genetics. Specifically, I gained much experience working with the actin cytoskeleton, which generates mechanical forces in cells. As a postdoctoral fellow in Eric Wieschaus' lab at Princeton University, I have learned Drosophila biology and have begun to develop quantitative and computational skills to analyze the dynamics of multicellular systems. Specifically, I have analyzed apical constriction, a common cell shape change that facilitates epithelial bending and tissue invagination. These complementary research experiences provide me with a unique perspective and a range of technical expertise that I will use in my independent lab to study how the actin cytoskeleton generates forces during development. In the Wieschaus lab, I discovered that apical constriction is driven by pulsed actomyosin contractions, which incrementally constrict the cell. Pulsed contractions are regulated by the transcription factors Twist and Snail, whose human homologues play important roles in cancer cell metastasis. In the current research plan, I propose experiments that will elucidate the mechanisms that regulate pulsed contraction. This will be achieved by integrating live-cell imaging, quantitative image analysis, genetics, biochemistry, and mathematical modeling. One goal will be to identify the molecular mechanisms that control pulsed contractions downstream of the transcription factors Twist and Snail. A second goal will be to determine how mechanical forces transmitted through the tissue regulate cell shape change and cytoskeletal organization during morphogenesis. To accomplish the goals of my proposal, I need additional training in quantitative image analysis, mathematical modeling, and physics. This will allow me to more effectively analyze the dynamics of the actin cytoskeleton and the physical interactions between cells in multicellular systems, which will be essential foundations for my future independent lab. The Wieschaus lab is the ideal environment to obtain this training because we are part of the Center for Quantitative Biology at Princeton University. Eric Wieschaus is an excellent mentor who strongly believes in quantifying experimental data and developing quantitative models to explain this data. I also collaborate with a theoretical physicist at Princeton, Matthias Kaschube, who is an expert on quantitative image analysis. Furthermore, Princeton offers a variety of seminars, classes, and resources that are at my disposal to further my education in quantitative biology. The additional training I obtain at Princeton will greatly improve my skills in quantitative analysis and modeling, and will increase the quality and impact of my future research. Overall, this experience will help me achieve my goal of running a multidisciplinary lab that performs cutting edge research on morphogenesis. Public Health Relevance: During development and cancer progression, gene expression induces mechanical changes in cells that result in changes in cell shape and tissue architecture. We will investigate the function of two genes that promote cell shape changes during the development of the fruit fly, and whose human homologues are involved in cancer cell metastasis. We will investigate how these genes generate forces in cells and tissues and whether the mechanical forces in a tissue regulate individual cell behavior.
描述(由申请人提供):形态发生是将简单的组织(例如上皮纸)雕刻成复杂器官的过程。形态发生是由单个细胞产生的力驱动的,这会导致细胞形状和组织力学的变化。在开发过程中,这些变化受遗传和机械信号在空间和时间上的严格调节。在癌症期间,这些信号通常被不当激活,导致细胞行为异常,导致肿瘤细胞生长和转移。因此,了解细胞和组织如何产生力对于了解发育和癌症至关重要。 因为形态发生取决于分子和机械信号的复杂相互作用,因此确定驱动形态发生的机制需要一种多学科方法,其中包括生物化学,遗传学,细胞和发育生物学,物理学和数学模型。作为加州大学伯克利分校戴维·德鲁宾(David Drubin)实验室的研究生,我接受了细胞生物学,生物化学和遗传学的培训。具体来说,我获得了与肌动蛋白细胞骨架一起工作的很多经验,该细胞骨架在细胞中产生了机械力。作为普林斯顿大学埃里克·维沙斯(Eric Wieschaus)实验室的博士后研究员,我学到了果蝇生物学,并开始开发定量和计算技能来分析多细胞系统的动态。具体而言,我已经分析了根尖收缩,这是一种常见的细胞形状变化,可促进上皮弯曲和组织内陷。这些互补的研究经验为我提供了独特的观点和一系列技术专业知识,我将在我的独立实验室中使用这些视角来研究肌动蛋白细胞骨架在开发过程中如何产生力量。 在Wieschaus实验室中,我发现顶部收缩是由脉冲肌球蛋白收缩驱动的,脉冲肌球蛋白收缩会逐渐收缩细胞。脉冲收缩受转录因子扭曲和蜗牛的调节,其人类同源物在癌细胞转移中起重要作用。在当前的研究计划中,我提出了实验,以阐明调节脉冲收缩的机制。这将通过整合活细胞成像,定量图像分析,遗传学,生物化学和数学建模来实现。一个目标是确定转录因子扭曲和蜗牛下游控制脉冲收缩的分子机制。第二个目标是确定在形态发生过程中通过组织传播的机械力如何调节细胞形状的变化和细胞骨架组织。 为了实现我的建议的目标,我需要在定量图像分析,数学建模和物理学方面进行其他培训。这将使我能够更有效地分析肌动蛋白细胞骨架的动力学以及多细胞系统中细胞之间的物理相互作用,这将是我未来独立实验室的重要基础。 Wieschaus实验室是获得此培训的理想环境,因为我们是普林斯顿大学定量生物学中心的一部分。埃里克·威斯(Eric Wieschaus)是一位出色的导师,他坚信量化实验数据并开发定量模型来解释该数据。我还与普林斯顿的一位理论物理学家Matthias Kaschube合作,他是定量图像分析的专家。此外,普林斯顿提供了各种研讨会,课堂和资源,这些研讨会和资源可以促进我对定量生物学的教育。我在普林斯顿获得的额外培训将大大提高我在定量分析和建模方面的技能,并会提高我未来研究的质量和影响。总体而言,这种经验将有助于我实现运行多学科实验室的目标,该实验室对形态发生进行尖端研究。 公共卫生相关性:在发育和癌症进展过程中,基因表达诱导细胞的机械变化,从而导致细胞形状和组织结构的变化。我们将研究两个基因在果蝇发育过程中促进细胞形状变化的功能,并且其人类同源物与癌细胞转移有关。我们将研究这些基因如何在细胞和组织中产生力,以及组织中的机械力是否调节单个细胞行为。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.
  • DOI:
    10.1038/ncb2796
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    21.3
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Christopher Martin其他文献

Adam Christopher Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Christopher Martin', 18)}}的其他基金

Tissue morphogenesis: From signals to forces
组织形态发生:从信号到力量
  • 批准号:
    10330672
  • 财政年份:
    2022
  • 资助金额:
    $ 8.58万
  • 项目类别:
Tissue morphogenesis: From signals to forces
组织形态发生:从信号到力量
  • 批准号:
    10543998
  • 财政年份:
    2022
  • 资助金额:
    $ 8.58万
  • 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
  • 批准号:
    9260898
  • 财政年份:
    2013
  • 资助金额:
    $ 8.58万
  • 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
  • 批准号:
    8481857
  • 财政年份:
    2013
  • 资助金额:
    $ 8.58万
  • 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
  • 批准号:
    8645656
  • 财政年份:
    2013
  • 资助金额:
    $ 8.58万
  • 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
  • 批准号:
    9061419
  • 财政年份:
    2013
  • 资助金额:
    $ 8.58万
  • 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
  • 批准号:
    8211679
  • 财政年份:
    2010
  • 资助金额:
    $ 8.58万
  • 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
  • 批准号:
    8403011
  • 财政年份:
    2010
  • 资助金额:
    $ 8.58万
  • 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
  • 批准号:
    8217255
  • 财政年份:
    2010
  • 资助金额:
    $ 8.58万
  • 项目类别:

相似国自然基金

PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
  • 批准号:
    82301707
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
莫氏细胞早期异常活化介导的前下托-齿状回环路构建在癫痫发生中的作用研究
  • 批准号:
    82371458
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
METTL1介导m7G甲基化异常修饰在肺动脉高压内皮细胞糖代谢重编程中的作用及机制研究
  • 批准号:
    82370057
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于脂肪酸代谢介导的神经元-星形胶质细胞偶联异常探讨好忘方抗AD作用机制
  • 批准号:
    82305087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ZNF683+CD8+组织驻留T细胞致食管肠神经干细胞分化异常在贲门失弛缓症发病中的作用和机制探索
  • 批准号:
    82300614
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
  • 批准号:
    8211679
  • 财政年份:
    2010
  • 资助金额:
    $ 8.58万
  • 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
  • 批准号:
    8403011
  • 财政年份:
    2010
  • 资助金额:
    $ 8.58万
  • 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
  • 批准号:
    8217255
  • 财政年份:
    2010
  • 资助金额:
    $ 8.58万
  • 项目类别:
PINCH-1 Interactions and Functions
PINCH-1 相互作用和功能
  • 批准号:
    7329816
  • 财政年份:
    2002
  • 资助金额:
    $ 8.58万
  • 项目类别:
PINCH-1 Interactions and Functions
PINCH-1 相互作用和功能
  • 批准号:
    7534806
  • 财政年份:
    2002
  • 资助金额:
    $ 8.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了